olatiles in Magmas Paul Wallace University of Oregon

Image: select selec

BT96 24H #8 (4x)

0.1 mm

Volatiles & Eruption Styles

Low viscosity magmas High magma rise rate lawaiian Stromboliar Low magma rise rate Lava flow

Higher viscosity Higher H₂O contents

Edmonds & Wallace (2017)

Role of Volatiles

- Phase equilibrium; mantle and crustal melting; degassing induced crystallization
- Magma buoyancy, compressibility & viscosity
- Overpressure & eruption triggering
- Subduction zones
- Long term C, S, H, CI cycles on Earth
- Effects on Earth's atmosphere & climate
- Ore deposits & hydrothermal systems

<u>Outline</u>

- How do we measure volatile contents? the problem of magma degassing
- Solubility experiments (H₂O, CO₂, CI, S) & comparisons with natural systems
- Using melt inclusions to infer crustal storage depths
- Degassing paths & diffusive H loss from melt inclusions
- Excess sulfur & exsolved volatiles in crustal magma reservoirs
- Challenges in determining magma CO₂ concentrations
- Volatiles & eruption triggering
- Using H diffusion out of melt inclusions to infer magma ascent rates

Problem of Magma Degassing

- Solubility of volatiles is strongly pressure dependent
- Volatiles are degassed both during eruption & at depth before eruption
- Bulk analysis of rock & tephra is not very useful

How do we measure volatile concentrations in magmas?

Submarine pillow rim glasses

Melt inclusions

How do we measure volatile concentrations in magmas?

Experimental petrology

Phase equilibria for andesite (Moore & Carmichael, 1998)

How do we measure volatile concentrations in magmas?

Thermodynamic calculations

Waters & Lange (2015)

Volcanic gases

- Ground & airborne remote sensing
- Satellite-based remote sensing
- Direct sampling & analysis

Α

Ln[SO₂ (milli atm-cm)] 2.5 1.5 1.5

> 1.0 0.5 0.0

> > Processed by NILU [fred.prata@nilu.no]

5.0 4.5 4.0

Sampling gases at Cerro Negro

Image by F. Prata

Solubility Experiments & Application to Natural Systems

Some key things to remember:

- Volatiles occur as dissolved species in silicate melts & also in a separate vapor phase if a melt is vapor saturated.
- At pressures of a few kbar and higher, the vapor phase is dense, more like a liquid than a gas. The words vapor, fluid, or gas are used to describe this phase.
- In laboratory experiments, melts can be saturated with a nearly pure vapor phase (e.g., H₂O saturated or CO₂ saturated).
- In natural systems, however, multiple volatile components are always present, forming a gas mixture (H₂O, CO₂, S, CI, F, noble gases, volatile metals, alkalies)
- Referring to natural magmas as being H₂O saturated or CO₂ saturated is, strictly speaking, incorrect because the vapor phase always contains other volatiles.
- Sulfur solubility is complex because of multiple valence states. The maximum solubility of S is limited by sulfide or sulfate phases, not by vapor saturation.

Gas (Fluid) Densities

Calculated using the Redlich-Kwong (1949) equation of state:

$$p = \frac{RT}{V-b} - \frac{a}{V(V+b)T^{0.5}}$$

where a is a measure of attractive forces between molecules & b is related to the size of the molecules.

Experimentally Determined H₂O Solubility in Silicate Melts

- Solubility is strongly pressure dependent
- Solubility does not vary strongly with composition differences seen in these plots are mainly caused by temperature differences

Temperature Dependence of H₂O Solubility

- Negative dependence of solubility on temperature at lower pressures
- Also for glasses cooling shards/pyroclasts can hold more H₂O

CO₂ Solubility in Silicate Melts

Ni & Keppler (2013)

• Silica-undersaturated melts (e.g., basanite, nephelinite) have much higher CO₂ solubility than basalt because they are more depolymerized (fewer bridging oxygen)

Solubilities with more than one volatile component present

• In natural systems, melts are saturated with a multicomponent vapor phase

• H₂O and CO₂ contribute the largest partial pressures, so people often focus on these when comparing pressure & volatile solubility

Rhyolitic melts saturated with H₂O-CO₂ vapor

• At higher pressures, dissolved H₂O enhances CO₂ solubility

Ni & Keppler (2013)

Melt inclusions & magma plumbing system at Stromboli

- Melt inclusions can be used to infer depths of crystallization & magma storage
- Very powerful when combined with other crystal-scale data e.g., compositional zoning, cathodoluminescence imaging.

Metrich et al. (2010)

Magmatic architecture beneath Soufriere Hills Volcano

 Evidence for vertically protracted, crystal-rich mush with heterogeneous bodies of eruptible magma in the upper crust.

Edmonds et al. (2016)

Vapor–Saturated Crystallization

 Magmatic H₂O contents increase during vapor-saturated crystallization if CO₂ is present

H₂O variations during differentiation in rhyolitic melts

Fulton et al., in prep.

Effect of low CO₂ solubility on degassing during ascent

Newman & Lowenstern (2002)

Melt Inclusions from Volcán de Fuego, Guatemala

• How much H₂O was in melts at time of trapping?

Why so much variation in H₂O from one eruption?

Lloyd et al. (2013)

Diffusive loss of H from melt inclusions

• Diffusive H loss occurs over timescales of hours at magmatic temperatures and results in increased D/H ratio (δ D) in melt inclusions

Bucholz et al. (2013)

Diffusive loss of H from melt inclusions during magma ascent

Johnson et al. (2010)

Melt inclusions corrected for H loss using K₂O & crystallization modeling

Lloyd et al. (2013)

H₂O Contents of Primitive Arc Magmas

- Based on published data for 100 volcanoes from 18 subduction zone segments
- Each data point represents a single volcano based on melt inclusion data
- All compositions have been corrected to equilibrium with Fo_{90} olivine

H₂O and CO₂ in rhyolitic melt inclusions

Wallace (2005)

Chlorine Solubility in Silicate Melts

- Melts can be saturated with either H₂O-Cl vapor or molten NaCl with dissolved H₂O (hydrosaline melt)
- Natural basaltic melts typically have <0.25 wt% Cl and thus are not saturated with hydrosaline melt

Chlorine in basaltic magmas

• Cl in arc & back-arc magmas is much higher than in MORB & OIB

• Indicates substantial recycling of seawater-derived CI into the mantle wedge

Chlorine in rhyolitic melts

- Cl solubility is much lower in rhyolitic melts compared to basaltic melts
- Some rhyolitic melts (e.g., Augustine volcano) have high enough dissolved CI for the melt to be saturated with hydrosaline melt before eruption

Sulfur Solubility

• Sulfur solubility depends on temp., pressure, melt composition & oxygen fugacity.

• Changes in f_{O_2} have a strong effect on solubility because S⁶⁺ is more soluble than S²⁻.

Matjuschkin et al. (2016)

• A rapid change from mostly S²⁻ to mostly S⁶⁺ occurs over the oxygen fugacity range that is common for arc magmas (NNO to NNO+1)

Sulfur solubility – effects of temperature, pressure & composition

Melt FeO content has a strong effect on solubility when S²⁻ is the dominant species

Solubility of both S²⁻ and S⁶⁺ are temperature & pressure dependent

Sulfur & sulfide saturation in MORB glasses

Smythe et al. (2017)

Comparison of sulfur in MORB and arc magmas

Ruscitto et al. (2010)

S solubility in intermediate to silicic melts

- Because of strong temperature dependence of S solubility, low temperature magmas like dacite and rhyolite have very low dissolved S.
- This led earlier workers to erroneously conclude that eruptions of such magma would release little SO₂ to Earth's atmosphere

Gas Fluxes and the Excess Sulfur Problem

Melt Inclusions

Wallace (2001)

• When rhyolitic melt inclusions are trapped in quartz or feldspar at typical magma chamber depths, most of the original CO₂ and S has been degassed

Vapor – melt partitioning of sulfur

Sulfur emissions & volcano deformation measured by InSAR

<u>Erupted volume</u> Observed volume change of a modeled source, from ground deformation

Vapor bubbles make magma compressible

McCormick Kilbride et al. (2016)

Wallace (2005)

H_2O and CO_2 in Basaltic Magmas

Wallace (2005)

Melt Inclusions & CO₂

Problem 1: Low CO₂ solubility at crustal depths where inclusions are trapped

• When basaltic magma reaches a shallow crustal magma chamber, much of the original dissolved CO₂ has already been degassed.

Melt Inclusions & CO₂

Problem 2: Post-Entrapment Bubble Formation

additional olivine crystallization or diffusion of CO_2 into the bubble

One approach is to use rare, undegassed MORB glasses & melt inclusions

Hauri et al. (2018)

Another approach is to determine how much CO₂ is in bubbles in melt inclusions

Mauna Loa melt inclusion

Methods for 'restoring' CO₂

- 1. Experimental rehomogenization
- 2. Raman determination of bubble CO₂ density
- 3. Modeling of cooling, crystallization & bubble exsolution

As much as 90% of initial CO_2 can be lost to a bubble (Moore et al., 2015)

Examples of restored CO₂

Klyuchevskoy

Cascade arc

Evidence for very high CO₂ in alkaline magmas

Basanites from Ross Island, Antarctica

Rasmussen et al. (2017)

Mafic magma supplies CO₂ to crustal magmatic systems

- Crustal magmatic systems are fundamentally basaltic
- Basaltic magma transfers volatiles from mantle to crust

"Degassing of basalt crystallizing in the roots of these systems provides a flux of He, CO₂, S, halogens, and other components." "[Stable isotope] data suggest that magmatic fluxes of C and S are dominated by mantle sources"

Hildreth (1981)

Transport & accumulation processes for exsolved vapor

Edmonds & Woods (2018) Parmigiani et al. (2016)

Exsolved Vapor & Eruption Triggering

Presence of exsolved vapor bubbles makes magma compressible

Volume fraction of vapor increases by:

- Fractional crystallization
- Recharge with vapor-saturated magma

Eruption may be triggered as increase in volume fraction of vapor causes overpressure in magma reservoir

Tait et al. (1989)

Eruption Triggering

- Homogeneous magma mixture cooled by a colder viscoelastic shell.
- When a critical overpressure is reached before mechanical locking, an eruption is triggered.

= cooling timescale / injection timescale

 au_{in}

Degruyter & Huber (2014)

Magma Ascent Rates

Diffusive loss of H from melt inclusions as a geospeedometer

Bucholz et al. (2013)

Basanite melt inclusions from Ross Island, Antarctica

Gaetani et al. (in prep.)

Ascent rates estimated from H_2O and δD variations

Gaetani et al. (in prep.)

Diffusive H loss from rhyolitic melt inclusions

Huckleberry Ridge Tuff, Yellowstone

Myers et al. (2016)

Ascent rates estimated from H₂O variations

- For inclusions that experienced <12 hours of diffusive loss, ascent rates are >0.1 m/s, whereas inclusions that underwent days of diffusive loss ascended much more slowly, at apparent rates of ~0.01-0.005 m/s.
- These slow rates could be the result of either slow, continuous magma ascent or more rapid ascent, with periodic stalling at shallower depths in the conduit.

Myers et al. (2016)

Summary Questions

- How and where are magmas formed?
- How much CO₂ is in mantle-derived magmas & how deep do they become vapor saturated?
- How are magmas stored and transported in the crust?
- How are volatiles transferred through crustal magmatic systems?
- How do eruptions begin, evolve, and end?
- How do feedbacks between volatiles, bubbles, crystals, magma viscosity, degassing and ascent rate determine eruptive style?
- What controls the explosive effusive transition?