CIDER 2019

of **Magmatic Systems**

A Petrologist's Eye View (Determining P-T-X ± t conditions)

experimental petrology & igneous processes cente – epic.asu.edu

Arizona State University

Christy B. Till School of Earth & Space Exploration Experimental Petrology & Igneous Processes Center (EPIC) Arizona State University

Goals For This Talk

- Transmagmatic system perspective
- Reconstructing the P-T-X±t evolution of magmas in the crust
- Recent advances & exciting future directions
 - Causes of eruption initiation?
 - Causes of intra-arc diversity?

Till et al., 2019, Nat. Comm.

Till et al., 2019, Nat. Comm.

The Mantle Matters

What does mantle melting really mean?

Peridotite =

60% olivine

- 15% clinopyroxene
- **15% orthopyroxene**

10% plagioclase/spinel/garnet

<9.5 kbar >9.5 kbar >18 kbar

solid

Magmatic Volatiles are Largely Mantle Derived

Estimates of av. depleted upper mantle volatile contents: F: 250 ± 50 ppm S: 146 ± 35 ppm Cl: 1 ± 0.5 ppm CO₂: 20 - 260 ppm H₂O: 20-220 ppm

Magmatic Volatiles are Largely Mantle Derived

Estimates of av. depleted upper mantle volatile contents: F: 250 \pm 50 ppm S: 146 \pm 35 ppm Cl: 1 \pm 0.5 ppm CO₂: 20 - 260 ppm H₂O: 20-220 ppm

Volatile-Effects on Mantle Solidi

volatiles (H₂O, CO₂) lower melting temperature at a given depth

Volatile-Effects on Mantle Solidi

volatiles (H₂O, CO₂) lower melting temperature at a given depth

Illustrates relationships between Pressure, Temperature, Extent of Melting (Melt %) & Melt Major Element Composition generated during mantle melting

Figure after Kushiro (2001)

Data from GEOROC: 2014 Compilation of Arc Melt Inclusions

Data from GEOROC: 2014 Compilation of Arc Melt Inclusions

FeO/MgO (wt%)

Data from GEOROC: 2014 Compilation of Arc Melt Inclusions

Mantle Flow & Delivery of Melts to the Lower Crust

compaction pressure etc.

Wilson et al., 2014

Evidence for punctuated mantle flux?

newer models include fluid flux & viscosity, temperature- & strain-dependent grain size, porosity,

Cerpa et al., 2019

Crustal Anatomy of Magmatic Systems

0 km Surface ~3 - 10 km UPPER CRUST 20 km Conrad LOWER CRUST 30 km Seismic Moho >30 km Petrological Moho ____

Cashman et al. (2017)

Annen et al (2006)

Bachmann and Huber (2016)

1

Crustal Anatomy of Magmatic Systems

Evidence for Important Role of the Lower Crust

Evidence for Important Role of the Lower Crust

Experimentally-Constrained Crustal Crystallization Paths ("Liquid Line of Descent")

Grove et al., 2012, AREPS

How We Do An Experiment?

Goals For This Talk

Transmagmatic system perspective

- Reconstructing the P-T-X±t evolution of magmas in the crust
- Recent advances & exciting future directions
 - Causes of eruption initiation?
 - Causes of intra-arc diversity?

Anatomy of Silicic Volcano

and Bachmann and Huber (2016)

evolutionprogressive assembly ofto silicic melt &individual magma bodies

What can we learn from a feldspar crystal?

Modified from Hildreth and Wilson (2007) and Bachmann and Huber (2016)

Under what temperature & pressure conditions did this crystal form?

www.tulane.edu/~sanelson

Composition of feldspar + co-existing melt are temperature-dependent (good thermometers) Other minerals have a compositions that are strongly pressure-dependent (good barometers)

Kent & Koleszar, IAVCEI, 2017

good compendium of volcanic thermometers & barometers: Putirka, RiMG, 2008

Under what temperature conditions did this crystal form?

with a single eruptive unit (history of particular magma body)

Yellowstone, Wyoming ca. 260 ka rhyolite lava

Till et al., 2015

over time at same volcano (history of a magma reservoir)

Aucanquilcha Volcanic Cluster, Chile andesite-dacite lavas

Walker et al., 2013

Under what P-T-X conditions did this crystal form?

Cold Seal Experiments on Late Bishop Tuff

P-T conditions of feldspar formation: 720°C, 150 MPa (for Late Bishop Tuff bulk composition)

820

Where in the crystallization sequence did this crystal form?

Thermodynamic Modeling of Silicic Magmas: Rhyolite-MELTS calculations for the Late Bishop Tuff

Range of P-T-X-crystallinity that match observations: 750°C, 150 MPa, 3.5 wt% H₂O, formed at ~40 wt% crystals

Gualda et al., 2012

Where in the crystallization sequence did this crystal form?

Thermodynamic Modeling of Silicic Magmas: Rhyolite-MELTS calculations for the Late Bishop Tuff

Range of P-T-X-crystallinity that match observations: 750°C, 150 MPa, $3.5 \text{ wt}\% \text{ H}_2\text{O}$, formed at ~40 wt% crystals

Gualda et al., 2012

Mark Ghiorso (Today's Tutorial!)

How old is this crystal?

Compilation of ²³⁸U—²³⁰Th (light blue circles) and ²³⁰Th—²²⁶Ra (dark blue diamonds) ages of bulk mineral separates of major phases, expressed as pre-eruptive residence age

Major phase ages – bulk mineral separates

Cooper, 2017

Feldspar was in magma reservoir for ~80,000 years

32

Crystal spent a small % of its lifetime in a magma with <50% crystals

⁴⁰Ar/³⁹Ar eruption age

Cooper & Kent, 2014; Rubin et al., 2017

Goals For This Talk

Transmagmatic system perspective

✓ Reconstructing the P-T-X±t evolution of magmas in the crust

- Recent advances & exciting future directions
 - Causes of eruption initiation?
 - Causes of intra-arc diversity?

Cataloging eruption initiation via different crystal P-T-X-t paths

DeGruyter et al., 2015

Cataloging eruption initiation via different crystal P-T-X-t paths

DeGruyter et al., 2015

Injection Triggered

Volatile Overpressure Triggered

Magma Mixing Triggered

What Initiated Yellowstone's Lava Creek Tuff Eruption?

What Initiated Yellowstone's Lava Creek Tuff Eruption?

sanidine

Shamloo & Till, 2019

reconstruct P-T history recorded in phenocryst rims

What Initiated Yellowstone's Lava Creek Tuff Eruption?

Shamloo & Till, 2019

Tie patterns from volcanic deposits to volcanic hazard assessment

How do we couple crystal records' view of magmatic processes with monitoring signals to better forecast eruptions?

Exciting Future Directions: What drives intra-arc diversity?

Till et al., 2019

View West at 41.6° Latitude

What Drives Intra-Arc Diversity?

Significant heterogeneity in geophysical observables along strike. Why?

Lower Crust Depth Slice Teleseismic Surface Wave Tomography

Janiszewski, Gaherty & Abers, 2019

Measured Surface Heat Flow

Blackwell et al., 2011

3.90 Phase 3.80 3.70 √elocity3.60 signature3.50 signature 3.40 (km/s) 3.30 3 20

What Drives Intra-Arc Diversity?

What produces the along strike variations in erupted volumes and compositions the **Cascades?**

Heat Calculations

Quaternary Cascades volcanism?

How much heat is released into the crust along strike to produce

Volume of Quaternary Volcanism

Latitude (°N)

Hildreth, 2007 & References Therein

Experimentally-Constrained Crustal Crystallization Paths ("Liquid Line of Descent")

Till et al., 2019, Nat. Comm.

CALCULATE CHANGE IN TEMPERATURE (SENSIBLE HEAT)+ EXTENT OF CRYSTALLIZATION (LATENT HEAT) AS A FUNCTION OF FINAL ERUPTED COMPOSITION

position

DAMP:

Blatter et al., 2013 Mt. Rainer starting composition 2 wt% H2O

Mandler et al., 2014 Newberry starting composition 0-3 wt% H2O

WET:

Grove et al., 2003 Mt. Shasta starting composition >4.5 wt% H2O

Heat Produced By Crystallization

Till et al., 2019, Nat. Comm.

Latitude (°N)

Total Magmatic Heat Released to Crust

Till et al., 2019, Nat. Comm.

Latitude (°N)

Volume of Mantle Basalt Required

Till et al., 2019, Nat. Comm.

Volume of Mantle Basalt Required

1 ORDER OF MAGNITUDE SMALLER THAN OTHER GEOLOGIC & MODEL CONSTRAINTS

~EQUIVALENT TO THE INTRUSIVE MAGMA BUDGET

Till et al., 2019, Nat. Comm.

Latitude (°N)

Statistical Correlation Between Magmatic Heat & Geophysical Observations

Till et al., 2019, Nat. Comm.

Latitude (°N)

Latitude (°N)

Measured Heat Flow: Ingebritsen & Mariner, 2010 Seismic Velocities: Janiszewski, Abers, Gaherty, 2019

1D Thermal Model to Interrogate the Geophysical Observations

Till et al., 2019, Nat. Comm.

SEISMIC WAVE SPEEDS PREDICT A MAGMATIC INPUT OF 6–12 X 10²¹ J INTO THE CRUST FOR EACH 100 KM ALONG STRIKE COMPARED TO OUR VOLCANIC ESTIMATE OF 5 X 10^{19–20} J

Intriguing Results & Testable Hypotheses

The ≥2-fold variability in volume of basaltic magma & magmatic heat input regulates the observed volcanic activity

Mantle-driven model

heterogeneous mantle flux + compositions drive arc diversity

Crust-driven model

heterogeneous crustal structure & stress drive arc diversity

Goals For This Talk

Transmagmatic system perspective

✓ Reconstructing the P-T-X±t evolution of magmas in the crust

✓ Recent advances & exciting future directions

- Causes of eruption initiation?
- Causes of intra-arc diversity?

Questions?

christy.till@asu.edu

