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1. Introduction 
 
Thermal convection in planetary mantle is an important physical process that 
controls thermal evolution of terrestrial planets. Terrestrial planets contain 
radioactive heating in the mantle and primordial heating (i.e., resulted 
largely from the core formation). Thermal convection occurs in the mantle to 
release the heating and cool the planets. Tectonics and volcanisms are 
surface manifestations of this convective process. 

Mantle convection may take different forms for different planets. On Earth, 
mantle convection involves recycling of the surface or oceanic lithosphere 
and results in plate tectonics. Because the lithosphere is relatively cold, 
recycling the lithosphere represents an extremely efficient way to release the 
heat and cool the mantle. On Venus and Mars, mantle convection appears to 
occur below a thick stagnant lid with rather different characteristics. 

Mantle convection is a highly non-linear process with non-linear rheology 
and energy transfer. For this tutorial, we study basic characteristics of 
thermal convection by using a computer program called citcom (Moresi et 
al., 1996). Citcom solves the conservation equations of the mass, energy, 
and momentum for thermal convection problems by using a finite element 
method. For this system of equations, there are two controlling 
nondimensional parameters: Rayleign number Ra and internal heating rate H 
(Ra is a measure of convective vigor). For a given Ra and H, citcom can be 
used to find heat flux at the surface and bottom boundary, flow velocity, 
temperature, and other important physical parameters. 
 
2. Governing equations 
 
The governing equations for thermal convection are the conservation 
equations of the mass, momentum, and energy. Over large time scales 
(>10,000 years), the mantle may be approximated as incompressible fluid, 
and then the mass conservation becomes continuity equation. The large 
mantle viscosity or Prandtl number (viscosity divided by thermal diffusivity) 
enables us to ignore the inertial terms in the momentum equation. To the 
first order, we can also ignore viscous heating and adiabatic heating in the 
energy equation. The governing equations can be written as 
 
∇ ∙ ! = 0,               (1) 
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−∇! + ∇ ∙ ! ∇! + ∇!! + !"!! = 0,             (2) 

!!!
!!
!!
+ u ∙ ∇! = !∇!! + !",           (3) 

where u, P, η, ρ, and T are the velocity, pressure, viscosity, density, and 
temperature, respectively; ez is the unit vector in vertical direction; cp, k, H 
and t are the specific heat, thermal conductivity, internal heating production 
rate and time, respectively. ρ can be related to coefficient of thermal 
expansion a and reference surface density and temperature as 
 
! = !![1 − ! ! − !! ].                 (4) 
 
In fluid dynamics, we often like to deal with dimensionless numbers. For 
example, we normalize depth of mantle by the thickness of mantle, which 
yields dimensionless thickness of 1. The real advantage of this practice is to 
identify controlling parameters that result from nondimensionalize the 
governing equations. For example, for thermal convection problems, two 
important nondimensional parameters can be immediately identified, 
Rayleigh number, Ra, and internal heating parameter, H. Then for thermal 
convection problems, whether they are for the upper mantle convection, or 
whole mantle convection, or convection for Mars, as long as Ra and H are 
chosen to be the same, the dynamics as dictated by the nondimensional 
equations is the same. 
 
Equations (1)-(3) are nondimensionalized using the following characteristic 
scales: length D; time D2/κ, viscosity η0, temperature ΔT, where D, κ, η0 
and ΔT are the thickness of the box, thermal diffusivity, reference viscosity, 
and temperature difference across the box depth. The non-dimensional 
equations are 
 
∇ ∙ ! = 0,               (5) 

−∇! + ∇ ∙ ! ∇! + ∇!! + !"#!! = 0,             (6) 

!"
!"
+ ! ∙ ∇! = ∇!! + !,                             (7) 

where dimensionless parameters Ra, Rayleigh number, and Q, internal 
heating rate, are 
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!" = !!!!"!"!

!!!
,                      (8) 

! = !!!
!!!∆!

,                               (9) 

 
For this tutorial, we will assume Q to be zero, and such convection is often 
basal heating convection. This leaves only one controlling parameter: Ra. 
 
3. Rheology and Constitutive Laws 
 
The mantle rheology describes how rocks deform or flow under mantle T 
and P conditions. Two common ways to study the rheology are 1) to 
examine how rocks deform in the laboratory under conditions as realistic as 
one can achieve and 2) to model Earth's response to certain forces (e.g., 
post- glacial rebound). It is generally agreed that mantle rocks are much 
weaker and easier to deform under higher T. However, mantle viscosity 
increases with P. In some part of the mantle, deformation is accommodated 
via diffusion creep, while dislocation creep is the dominant deformation 
mechanism in other part of the mantle. For dislocation creep deformation, 
mantle viscosity also depends on stress and is controlled by what is often 
called power-law rheology.  
 
For this tutorial, we will use the simplest form of rheology: constant 
viscosity throughout the box, η0. 
 
4. Boundary Conditions and Initial Conditions. 
 
For any differential equations, we need to specify boundary conditions to 
have a unique solution. For time-dependent problems, we also need initial 
solutions. For our 2-D Cartisian models of this tutorial, we use free slip 
boundary conditions (i.e., zero normal velocity and zero shear stress) for the 
four sides of the box and isothermal boundary condition for the top and 
bottom boundaries (i.e., T=0 and 1 at the top and bottom respectively) and 
reflecting (or zero heat flux) boundary condition for the two sidewalls. 
However, other types of boundary conditions are often used as well, such as 
prescribed surface velocity or bottom heat flux. 
 
Initial temperature is needed as an initial condition for the time-dependent 
energy equation (unlike wave equations which require both initial 
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displacement and velocity to specify the solution because of their 2nd order 
derivatives with time, our energy equation only has first order derivative 
with time and requires only one initial condition). In thermal convection 
studies, often we are interested in steady state solutions by running models 
for many time steps. Quite often, these steady state solutions (or statistically 
steady state) are rather insensitive to initial conditions.  
 
For critical Ra and Nu-Ra calculations in this tutorial, the initial temperature 
is given as  
 
! !, ! = ! + !cos  (!"

!
)sin  (!"),          (10) 

 
where p is the magnitude of the perturbation (e.g., several percent), and L is 
the nondimensional length of the box. For the tutorial problem of 
lithospheric cooling and subsequent instability, the initial condition is  
 
! !, ! = 1 + ![rand() − 0.5],          (11) 
 
where rand() stands for a random number in the range of 0 and 1. 
 
5. Numerical Methods and Grid 
 
Citcom employs a multigrid finite element method that solves for velocity 
and pressure via a primitive variable formulations [e.g., Hughes, 1987]. It 
uses the stream-line upwind Petrov-Galekin (SUPG) for energy equation 
[e.g., Brooks, 1980]. Some of the implementation issues are discussed in 
Moresi and Solomatov [1995]. This version of code also includes some 
enhancements (full multigrid and consistent projection) that are discussed in 
Zhong et al. [2000]. Most of you as a user may not care that much about 
these issues, but if you do, you can always check up these references. 
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6. Tutorial topics 
 
6.1. Calculations of critical Ra. 
 
As we have learned, for a fluid layer with differential temperature ΔT across 
the layer, when Rayleigh number is above a certain value, Ra_c, the fluid 
layer is unstable against perturbation and thermal convection will take place. 
Ra_c is the critical Rayleigh number. When Rayleigh number of the fluid 
layer is smaller than Ra_c, the layer is stable and thermal convection cannot 
occur. As shown in Turcotte and Schubert (2002), when initial temperature 
takes the form of equation (10) and the fluid layer has free-slip and 
isothermal boundary conditions, Ra_c depends on the wavelength of the 
perturbations (i.e., L in equation (10)), and is given by 

,          (12) 
2

322 )(
k
kcRa +

=−

π
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where k=2π/λ is the wavenumber, and λ is the nondimensional wavelength. 
For reflecting boundary conditions used here, λ=2L or k=π/L, where L is the 
nondimensional length of the box. Clearly, for a unit aspect of box with L=1, 
Ra_c=8π4=779.27. 
 
For this part of the tutorial, we determine Ra_c using Citcom code and 
compare results with that from (12). We will follow the following strategy. 
As we know, for Ra<Ra_c, the initial perturbation given by (10) will decay 
away or horizontal gradient given in (11) will decrease with time. However, 
for Ra>Ra_c, the opposite will happen. A good measure is the kinetic energy 
of the flow for the box, KE, 
 
!! = 1/2 ! ∙ !!"!# .                      (13) 
 
KE increases/decreases as the perturbation increases/decreases. Therefore, 
for a given Ra in a calculation, by monitoring KE with time, we can 
determine whether Ra is smaller or larger than Ra_c. We can run multiple 
calculations with different Ra to bracket or determine Ra_c.  
 
Knowing Ra_c=779.27 for a unit aspect box (i.e., L=1), you should first try 
to determine Ra_c using Citcom. Use input file input_Racr and try two cases 
with Ra=800 and Ra=760, respectively, to see how KE varies with time for 
each case. In the output directory (e.g., CASE1), you will see a file 
a.time_dependence and the first and second columns of this file are time and 
KE, respectively. You should try more cases to further narrow down 
numerically determined Ra_c to see how well you can determine Ra_c.  
 
Here are some further questions to try or think about. 

A) Vary box length L to see how well you can reproduce results from 
(12).  

B) Does the magnitude of the perturbation p in (10) affect your results of 
Ra_c? 

C) Equation (12) is obtained from the linear stability analysis that 
suggests that the velocities and perturbations grow exponentially with 
time for the initial stage. Can you check KE from the output file to see 
how it varies with time?  

D) If the initial perturbation in equation (10) is modified as          
! !, ! = ! + !cos  (!"

!
)sin  (2!"), i.e., the z dependence is changed, 

do you think that Ra_c would change?          
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6.2. Nu-Ra scalings. 
 
For entirely basal heating thermal convection with free-slip and isothermal 
boundary conditions, we have learned that as Ra increases, heat flux or 
Nussult number Nu will also increase in a scaling form: Nu=aRa1/3. We also 
know that thermal boundary layer thickness δ should also scale as δ~Ra-1/3 
and flow velocity u~ Ra2/3.  
 
Here we will compute multiple cases with different Ra in a unit aspect box 
and quantify outputs of heat flux Nu, flow velocity u and thermal boundary 
layer thickness δ to see how well they follow the above scaling laws. 
Different from the first tutorial calculation that only needs the initial stage 
results, here calculations need to be computed to approximately steady state 
(i.e., until heat flux does not change appreciably with time) and depending 
on Ra, you may need to run the calculations for thousands of time steps. For 
practical reasons, do not use too high Ra (why?), and try Ra=104, 3x104, 105, 
3x105, 106, and 3x106.  
 
Use input file input_Nu_Ra to do calculations with different Ra. To check 
the time dependent heat flux and characteristic flow velocity, go to the file 
a.time_dependence, the 3rd, 4th, 5th and 6th columns are for surface heat flux 
(Nu), bottom heat flux, surface averaged velocity and bottom averaged 
velocity, respectively (the first column is the time). Check to see whether 
they are in the steady state. Only use the steady state results of surface Nu 
and velocities for fitting scaling laws for different Ra. You may need to use 
software package grace or matlab to fit the scaling laws for a set of Nu-Ra 
values or u-Ra values. 
 
You should also use GMT script plot_temperature_velo to plot temperature 
and flow velocities and also surface and bottom heat fluxes at different time 
steps. Pay attention to flow and temperature patterns (e.g., hot upwellings) 
and also how surface and bottom heat flux patterns are related to the interior 
temperature and flow patterns. You will need to modify 
plot_temperature_velo to suit your need. 
 
Here are some further questions to try or think about. 

A) How would you define thermal boundary layer and determine its 
thickness δ? Hint that there are output files a.ave_z.timesteps for 
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horizontally averaged temperature (the second column) versus depth z 
(the first column).  

B) If you can determine δ, can you try to fit the scaling δ~Ra to see 
whether it is what you expect?  

C) What do you need to do for your numerical grids when Ra is large? 
Why? 

 
6.3. Cooling and thickening of lithosphere and subsequent instability. 
 
For a box with insulating sidewalls and uniform temperature T=1 
everywhere except for the surface where T=0 is subscribed as boundary 
conditions (the bottom boundary is kept at T=1), the box will cool from the 
above, and a top thermal boundary layer will develop and thicken with time. 
As long as heat conduction is the dominant mode of heat transfer and the 
thermal boundary layer is much thinner than the thickness of the box, the 
time evolution of the temperature field T(z,t) is governed by the well-known 
cooling half-space model (e.g., Turcotte and Schubert, 2002). However, the 
top thermal boundary layer is gravitationally unstable. One can understand 
the process as following. When the top boundary layer thickness δ reaches a 
certain value, such that Raδ=ρgαΔTδ3/(ηκ) reaches a critical value Ra_cd, 
then the thermal boundary layer becomes unstable, and the boundary layer 
destabilizes and drives convection.  
 
We may derive the time it takes for the instability to occur, or the onset time, 
τ. The top boundary layer thickness δ thickens with time t, as the following:  
 
δ∼(κt)1/2,                         (14) 
 
At the onset time τ,  
 
Raδ=C’ρgαΔTκ1/2τ3/2/(η)=Ra_cd,                      (15) 
 
where C’ is a constant from (14). Assuming that Ra_cd as a critical Ra is a 
constant, (15) becomes 
 
τ3/2=η/(CρgαΔTκ1/2)=C(D3/κ3/2)[ηκ/(ρgαΔTD3)].                          (16) 
 
τ=a(D2/κ)[ηκ/(ρgαΔTD3)]2/3=a(D2/κ)Ra-2/3,                     (17) 
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where a is a constant and Ra is the Rayleigh number defined by layer 
thickness D. Since the time is normalized by D2/κ, dimensionless onset time  
 
τ=aRa-2/3.                     (18) 
 
The goal of this tutorial is to test the cooling half-space model for the initial 
heat conduction process and then to verify the scaling relation for the onset 
time (18). According to the cooling half-space model (Turcotte and 
Schubert, 2002),  
 
!!!!
!!!!!

= erf  [ !
!(!")!/!

] ,               (19) 
 
where Ts and Tm are the surface and interior temperatures, respectively, z is 
the depth, and erf() stands for error function. The dimensionless form of 
(19), using the same scalings as for our convection problem, is 
 
! = erf  [ !

!(!)!/!
] ,               (20) 

 
which can be directly compared with results from Citcom. 
 
Use input file input_lith for the model calculations where Ra can be varied 
(note that a model with different Ra can be viewed as that with different 
fluid viscosity). For this type of calculations, equation (10) is used as the 
initial temperature condition that includes some random perturbations. 
Output file a.ave_z.timestep gives horizontally averaged temperature Tave(z) 
(the second column) versus depth z (the first column) at some given time 
steps. Tave(z) from Citcom can be compared with analytical solutions at the 
corresponding time from the cooling half-space model (i.e., equation 20) that 
is given in the third column in file a.ave_z.timestep. When the instability 
starts, Tave(z) from Citcom will start to deviate from equation (20). Onset 
time t is defined as the time at which Tave(z) from Citcom deviates from the 
analytical solutions by 1% at any depth (e.g., Huang et al., 2003).  
 
To verify the onset time scaling (18), you will need to run several 
calculations with different Ra. For each calculation, determine onset time τ. 
Then use grace software package or matlab or any other method to fit a 
scaling for a set of τ-Ra values. Also use GMT script plot_temperature_velo 
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to make some plots at different time steps and regimes (e.g., conduction and 
instabilities). 
 
Here are some further questions to try or think about. 

A) We define Raδ=ρgαΔTδ3/(ηκ) using thermal boundary layer 
thickness. You may find the dimensionless thickness of the top 
thermal boundary layer δ at the onset of instability from this exercise. 
Then we have Raδ=δ

3Ra, where Ra is Rayleigh number defined by the 
box thickness and is given in input file. How does Raδ compare 
between different model runs with different Ra and compare with 
critical Ra qualitatively from 6.1? 

B) You may find an expression for surface heat flux for the cooling half-
space model from Turcotte and Schubert (2002). Citcom outputs 
surface heat flux at different time, as discussed before. Do you want to 
check how Citcom solutions compare with the analytical solutions? 
You may need to non-dimensionalize surface heat flux for 
comparison.   

C) After the onset of instability, what happens to the temperatures of the 
fluid interior and the top boundary layer, compared with the cooling 
half-space model prediction? 

D) This model and scenario can be compared with the evolution of 
oceanic lithosphere from the spreading centers (where its age is zero) 
to old ocean basins. Considering that our current model only uses 
constant viscosity and ignores temperature-dependent viscosity, what 
would you say how this idea may be applied to the oceanic 
lithosphere? 

 
7. Use the code, input and output files 
 
Use the code 
 
For all the tutorial topics discussed here, we will use a single executable 
citcom.x. In your work directory where the source code is contained, type 
unix/linux command 
 
$make all 
 
and citcom.x (and other post-processing executable codes) will be generated 
and be ready to use. 
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To run Citcom calculation, issue the following command 
 
$citcom.x input_Racr 
 
where input_Racr is the input file that is specific to the run. The run may 
take a few minutes or hours, depending on the number of time steps and 
number of finite element nodes. The run will produce outputs in a directory 
specified in the input file (e.g., CASE1 under the work directory).  
 
Input files 
 
We now discuss input files. There are three types of input files: input_Racr, 
input_Nu_Ra, and input_lith, that are used for tutorial topics 6.1, 6.2 and 
6.3. First, let us look at input_Racr, input file for computing critical Ra, and 
we will only discuss relevant parameters (i.e., those that you may want to 
vary).  
 
Datafile=”CASE1/a” 
 
This specifies where output files are to be stored (e.g., directory CASE1). 
“a” here is the prefix for all the output files for this calculation. Notice that 
you must create directory CASE1 first (e.g., using command: $mkdir 
CASE1) before running the case.  
 
rayleigh=8.e2 
 
This specifies Rayleigh number for this calculation. For another calculation, 
you may change it to some other value (e.g., 7.6e2, and prefix for output 
files be “b”). 
 
perturbmag=0.05 
 
This is the magnitude of the perturbations p in equation (10).  
 
maxstep=100 
storage_spacing=2 
 
They specify the total number of time steps and how frequently the outputs 
(e.g., kinetic energy) are generated (e.g., every 2 time steps). For the critical 
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Ra calculation, there is no need to compute too many time steps, but more 
frequent outputs are useful. 
 
dimenx=1.0 
dimenz=1.0 
 
They represent dimensionless length and thickness of the box (i.e., unit 
aspect ratio). If you would like to compute critical Ra for wavelength λ=1, 
you may want to reduce dimenx=0.5. Notice that there is a parameter 
“perturb=1.0” in the input file, and keep it to be 1.0. 
 
mgunitx=2 
mgunitz=2 
levels=4 
 
They specify the number of elements in each of x and z directions and multi-
grid levels, respectively. The number of element in x or z direction is given 
by the equation: elx = mgunitx*2(levels-1). In this case, elx=elz=16, and the 
number of nodes in each direction nox=noz=17. 
 
In most cases, you do not need to change other parameters in the input file.  
 
Now let’s look at input file for Nu-Ra calculations, input_Nu_Ra. This input 
file has nearly identical form as input_Racr. Parameter “rayleigh” should be 
larger than 3e3, as discussed in section 6.2. Keep parameter “dimenx” to be 
1, but you are welcome to increase it to some larger values (i.e., longer 
boxes). For this tutorial topic, parameter “maxstep” needs to be 1000s or 
more to get steady state solutions of heat flux. You may also need to use 
more numerical resolutions (i.e., more grid points), depending on Ra. Notice 
that parameter “storage_spacing” is set to be 20 here. This number can be 
even larger, given that the calculations use 1000s time steps and we are 
interested only in steady state solutions.  
 
The third input file, input_lith, has a lot of more similarity to input_Racr, in 
the sense that we are interested in the transient process or results for the first 
100’s time steps, and a relatively small “storage_spacing” helps to determine 
the onset time more precisely. However, if you would like to see the 
convective structure after the onset of instability, you may need to run for 
more time steps than did for critical Ra calculations. Note that there is a 
small switch in input files to determine which initial conditions (equations 
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10 or 11) are to be used for these three cases. However, you do not need to 
worry about it, as long as you use the input files correctly for the right cases. 
 
Output files 
 
We now discuss output files from citcom runs. First, the output files are 
stored in directory with prefix that are specified in input file, as discussed 
before. For example, “CASE1/a” in the input file means that the files are 
stored in directory CASE1 with prefix “a”. You must create directory 
CASE1 before starting the calculation.  
 
In the directory, you will see typically output files like: a.velo.XXXX, 
a.heatflux_tb.XXXX, a.ave_z.XXXX, and a.time_dependence, where 
XXXX is time step. File a.velo.XXXX contains coordinates, temperature, 
velocities for each grid node at time step XXXX. Files a.heatflux_tb.XXXX 
are for surface and bottom heat flux versus x coordinates for the given time 
step, while a.ave_z.XXXX is for horizontally averaged temperature. File 
a.time_dependence is for kinetic energy, averaged surface and bottom heat 
fluxes at different times.  
 
Of course, it is not easy to see and understand the results by looking at the 
data files, and graphics are big helps here. GMT script 
plot_temperature_velo processes citcom output files and makes plots of 
thermal structure and velocity field in the box, and also surface and bottom 
heat flux. You may need to plot time-dependent kinetic energy or surface 
heat flux in file a.time_dependence. You can try out your own GMT script 
for this purpose. 
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