Magmas to Mush: Old Rocks and New Ideas

George Bergantz University of Washington

BJ Walker, Juan Otamendi, Mihai Ducea, Jill Schleicher, Alain Burgisser, Olivier Bachmann

If we understood MSH... would we necessarily understand magmatic systems?

Processes that are shared and those that are unique

Cashman et al., 2013, GSA Bull.

Ducea et al., 2015, AREPS

"Right" Physical model for formation of igneous crust?

 Controls on architecture?
 Rationalize geochemical, geophysical perspectives?

Mariana arc, Calvert et al., JGR, 2008

Commonalities From Geophysical Structure

Some Crustal Sections:

 $100 - 50 \text{ my}, \quad 0 - 55 \text{ km}$ Kohistan Talkeetna 200 – 150 my, 0 – 10, 20 – 30 km North Cascades 95 – 65 my, 10 – 35 km Sierra Nevada/BC 180 – 50 my, 5 – 30 km <u>170 - 100 my, 15 - 50 km</u> Fiordland Ivrea Zone 286 – 282 my, 5 – 30 km 473 - 468 my, 9 – 35 km Famatina

Most fragmented spatially and temporally

Missing the mafic "mothership" which drives arc magmatism

Average magma flux rates km³/yr-Large Silicic Provinces:Altiplano-Puna: $4x10^{-3} - 1.2x10^{-2}$ Central San Juan: $8x10^{-3}$ Sierra Nevada: $3 - 9x10^{-3}$ North Cascades: $3x10^{-3}$ Boulder, B.C. batholith: $6x10^{-3} - 1x10^{-2}$ Famatina $1.5x10^{-2}$

Other Arc systems(but see Jicha, Singer):Klyuchevskoy: 3.2×10^{-2} Mt. Shasta: 6×10^{-3} Tatara-San Pedro: 6×10^{-5} Mt. Adams (field): 2.5×10^{-4} Ceboruco- Pedro: 1×10^{-4} Santorini: 4.6×10^{-4}

Tempo- not simple...Global arc crust growth rates of about 2.6 km³/yr (Jagoutz and Schmidt, 2013)

Paterson et al., 2011, Geospheres

Lifespans of Cascade Arc Volcanoes

GP, MR, MA, MH, MM inception ages of 400 – 600 kyr

MSH, MJ, NV, MS, L, 200 – 300 kyr

Sisters, MB less than 50 kyr

- Ancestral volcanoes have similar total durations 200 – 600 kyr
- Elevated behavior .1 100 kyr

Calvert, 2015 AGU Fall meeting V23C-06

What is the significance of the 4-5 m.y. trigger?

Rhyolite (> 68 wt%)

(63-68 wt%)

(57-63 wt%)

(52-57 wt%)

alteration from field

ignimbrite in system

relationships

alteration

Basaltic Andesite

Dacite

Andesite

(Grunder et al., 2008, Trans. Roy. Soc. Edin.)

Sierra Valle Fertil

Sierra Valle Fertil Cross section

Tibaldi et al. Tectonophysics, 2013

Crustal section built in ~ 4 million years

Assembly was not a simple bottom-up process

Ducea et al., 2017, Geology

Massive ultra-mafic cumulate pods

Amp-olv webesterite, small dunites, anorthosites elsewhere

Modal and compositional layering in gabbro

Tonalite (daughter) domains in gabbro

Contacts gradational and hyper-solidus

Amp oikocrysts in gabbro

Heterogeneous tonalite with enclaves

Many scales of melt channels

Melt drainage networks: what controls length scales and porosity reduction?

*prograde path*Stromatic migmatite ———> Diatexite

PI+ Qtz+ Bt+Sil = melt+Kfs+Grt+Crd+Ilm/Mt

Differing expressions of melt organization and migration

What observations motivate an interest in mush?

Ward et al., EPSL 2014

Claiborne et al., 2010, Geology

What does a "living" mush look like?

Mauna Loa 1868 picrite

Rabida, Galapagos plag-rich xenolith

What does a "living" mush look like?

Fish Canyon Tuff

What does a "living" mush look like?

Fish Canyon Tuff

"Textural analysis in the time of mush..."

- Kathy Cashman, Laguna del Maule, Chile, 2018

Statics: Force chains

Stress transmission in hydrogranular media: Force chains and arches

Coordination number Z: average number particle-particle contacts per particle

 $Z = \sum c\xi(c)$

Kinematics: Elements of description

Robustness: redundancy in particle network

weak

strong

Strength: a network property

How to initiate cluster or melt channel formation?

Two competing time scales:

Separate particle response time from granular 'continuum' response time The Viscous number: ratio of the particle response time to the far field shear rate, controls granular behavior

 $=\frac{3\eta_{f}\dot{\gamma}}{2\Delta\rho g\alpha d}$

Dynamic Unlocking-

vg

Next steps: Real mushes are paranematic

Picard et al., JGR, 2013

Strain partitioning and grain size reduction, 52% crystals

Paterson rig experiments Picard et al., JGR, 2013

Dynamics: Friction activated by the appearance of normal forces, the "*f* factor"

Ansatz: $PDF_{f_n^*} = \exp(C(1-f_n^*))$

Kinematics: Discrete displacements, how to define strain (plastic deformation)?
Steric effects yield particle trajectories that deviate from imposed flow → symmetry breaking

■ Decompose displacement field into an affine and fluctuating part → granulence (after Radjai & Roux, 2002)

Dissipation is governed by particle friction and drag not controlled by a single length scale

Silicic Mushes?

Bishop Tuff

(Hildreth, 2004, J. Volc. Geotherm. Res., v. 136, p. 169)

Understanding Magmaic to Volcanic Behavior

Lab experiments

Numerical experiments

Field examples

