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Aims of Volcano Seismo-Acoustics

Volcanology perspective - 

understand volcanic processes from 

seismic/acoustic signals and patterns

Seismology and acoustics perspective - 

understand seismic and acoustic source 

processes

Monitoring and forecasting



• Seismicity at Augustine Volcano, Alaska, 1970-2007
   Red lines = eruptions

Power et al. 2010

Paradigm I: Seismicity accompanies activity
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After Power et al., 2019

“Failed eruption” problem - see Moran et al. 2011

Paradigm I: Seismicity accompanies activity
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Cameron et al., 2018

Paradigm I: Seismicity accompanies activity
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Passarelli and Brodsky 2012 (GJI) 

Duration of Precursory Seismicity
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After Passarelli and Brodsky 2012 (GJI) 

Duration of Precursory Seismicity

Redoubt 2009

20 yr repose

131 day runup

Mt St. Helens 2004

18 yr repose

8 day runup

Okmok 2008

11 yr repose

0.21 day runup



8

Passarelli and Brodsky 2012 (GJI) 

Duration of Precursory Seismicity

Crystal 

Clocks?



 Multiple processes produce seismic signals at 

volcanoes. The signals are (mostly/sometimes) 

distinctive and ultimately reflect the nature and 

underlying physics of the source process

 By looking for different event types, we can 

identify the processes occurring in a magmatic 

system and thus gain information about the state 

of the volcano

Paradigm II: Seismic Event Classes



Paradigm II: Seismic Event Classes

 Distinguished by frequency content and shape/length

‘VT’ (volcano-tectonic) or ‘HF’ (high-frequency):

Hybrid event:

‘LP’ (long-period) or ‘LF’ (low-frequency):

‘VLP’ (very-long-period):

After McNutt and Roman 2015

see Minakami 1974, Lahr et al. 1994, Miller et al. 1998 

for classification scheme descriptions



Paradigm II: Seismic Event Classes

 Distinguished by frequency content and shape/length

Volcanic tremor (can be harmonic or broadband):

Explosion with ground-coupled airwave:

Rockfall signal (note cigar shape):

After McNutt and Roman 2015



Utility and appropriateness of a universal event 

classification scheme?

  Implies the existence of clearly distinct classes rather 

than a spectrum of event characteristics

  Implies that event classes are uniquely linked to a     

    particular source process

  Implies that events do not interfere/interact with each 

  other  

Event Classification Issues



Station-to-station variations: Mammoth 1989

After Julian et al., 1998

Event Classification Issues



  Bueno et al. 2019, Seismol Res Lett

  https://github.com/srsudo/remos

  Malfante et al. 2018, IEEE Signal Proc Mag

  https://github.com/malfante/AAA

  Roman 2017, Geophys Res Lett

  https://github.com/dcroman/Tremometer

  (harmonic tremor detection)

    Wech and Creager 2008, Geophys Res Lett

  https://github.com/awech/AVO-alarms

  (broadband tremor detection)

Automated Event Detection/Classification



High-frequency 

earthquakes

Low-frequency 

events

Explosion 

seismicity

Zzzzz…
.

Precursory Seismicity Patterns



McNutt and Benoit (1995) 

Precursory Seismicity Patterns
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Precursory Seismicity Patterns: MSH 2004

Figure from Seth Moran



Moran et al., 2008

Onset of 

seismic

unrest

Eruption

Start

Precursory Seismicity Patterns: MSH 2004



After Roman and Gardine 2013 

and Roman and Cashman 2018

Precursory Seismicity Patterns: Redoubt 2009



Geirsson et al., 2014

Rodgers et al., 2015

Roman et al., in review

Precursory (phreatic) Seismicity Patterns: Telica



• Volcanotectonic (VT) (aka “HF”) earthquake:

  Clear high-frequency P and S waves, peak frequencies above 5 Hz, 

  short coda

  Brittle response of host rock to processes in the magmatic system 

VTs: Theory



Coulomb stress change: 

VTs: Theory

See Toda et al., 2002; Segall et al. 2013; 

Coulomb 3.3: https://earthquake.usgs.gov/research/software/coulomb/



After Rubin and Pollard 1988

Numerical models show
two induced stress regimes:

• Compression in walls of dike
 (perpendicular to dike strike)

• Tension above propagating dike

Dike-induced stress regimes



VTs: Theory

After Roman and Cashman (2006)

High-viscosity magmasLow-viscosity magmas



Battaglia et al., 2005
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Piton de la Fournaise, La Reunion - 1998

VTs: Low-Viscosity Magmas



Caldera collapse

Eruption site

Pu’u O’o

Kilauea, Hawai’i - 2018

Well-located events Jan 1 – Dec 31, 2018

Inset: Neal et al. (2018)

VTs: Low-Viscosity Magmas



After Sigmundsson et al., 2015

VTs: Low-Viscosity Magmas

Holuhraun, Iceland - 2014



Agustsdottir et al., 2016; Woods et al., 2019

VTs: Low-Viscosity Magmas

Holuhraun, Iceland - 2014



Roman and Cashman (2018)

VTs: High-Viscosity Magmas

Mt. St. Helens, Washington - 2004

Seismic: Moran et al. 2008; Geodesy: Dzurisin et al. 2008; Petrology: Pallister et al. 2008



Lehto et al., 2010

VTs: High-Viscosity Magmas

Mt. St. Helens, Washington - 2004



Roman and Cashman (2018)

VTs: High-Viscosity Magmas

Mt. Spurr/Crater Peak, Alaska - 1992

Seismic: Power et al. 1995; Petrology: Harbin et al. 1995 and Power et al. 2002



Roman et al. (2004)

VTs: High-Viscosity Magmas

Mt. Spurr/Crater Peak, Alaska - 1992

Fault-plane solution P-Axis azimuths



Distal VT Earthquakes

Harlow et al., 1996

Aspinall et al., 1998

Left: Pinatubo 1991
Below: Soufriere Hills 1995



Distal VT Earthquakes

Hurst et al., 2018

Ruapehu, New Zealand - 1995



Distal VT Earthquakes

Wauthier et al., 2016



Robin S. Matoza
Department of Earth Science; University of California, Santa Barbara

Seismo-acoustic signals associated with 

volcanic processes II

image: Tyson Fisher

D. Fee A. Austin A. AustinN. Key



Volcano seismology and acoustics

• Atmospheric acoustics (infrasound): ~0.01-20 Hz

• Variety of shallow and subaerial sources 

• Explosive volcanism: powerful signals

Seismic

• Migration of fluid from mantle depths to surface

• Faulting & fluid transport in the solid earth

• Limited propagation < few hundred km

Acoustic

(infrasound) Seismic

Acoustic



Infrasound

• Low-frequency acoustic waves below the 20 Hz human hearing threshold

• cf infrared

Evers and Haak [2010] after Gossard and Hooke [1975]

The acoustic cut-off frequency NA is typically 3.3 mHz, and the 

Brunt-Väisälä frequency N is 2.9 mHz in the lower atmosphere.

M. Hedlin



• Large wavelengths (15 m ≤ λ ≤ 100 km), produced by large sources

The acoustic cut-off frequency NA is typically 3.3 mHz, and the 

Brunt-Väisälä frequency N is 2.9 mHz in the lower atmosphere.

CTBTO

Evers and Haak [2010] after Gossard and Hooke [1975]

Infrasound



image: Tyson Fisher

Phreatic explosion, Mount St. Helens, 8 March 2005 



Matoza et al. [2007]

Seismic Acoustic

Phreatic explosion, Mount St. Helens, 8 March 2005 



USGS

• Classifications based on waveform and 

frequency content

• What you see depends on instrumentation

• Classifications based on physical mechanism

Volcano seismology: signal classification 



Volcano seismology: signal classification 

Ackerley [2015]

https://doi.org/10.1007/978-3-642-35344-4_172

• Ultra-long-period (ULP)  >100 s or <0.01 Hz

• Very-long-period (VLP)  2–100 s or 0.01–0.5 Hz

• Long-period (LP)            0.2–2 s or 0.5–5 Hz

• Short-period (SP)           0.05–0.2 s or 5–20 Hz

Typically (but not always), the following 

definitions are used [Ohminato et al. 1998]:

Period Frequency

•  Strictly speaking, this terminology refers just to the band of the signal

•  However, in general, different physical processes occur on different time and spatial scales

•  Observed volcanic signals often do not fall neatly into these bands

Classification based on frequency content

The advent of 

broadband seismometry 

led to observations of 

new signals: VLPs and 

ULPs



Infrasound

Seismic

• Short-duration asymmetric explosion waveforms 

• Near-continuous broadband infrasonic tremor 

consisting of repetitive positively skewed pulses

• Numerous repetitive long-period (LP) events

• Underlain by very-long-period (VLP) signals 

with periods of ~10 s

LP: 0.5–5 Hz (0.2–2 s period) 

VLP: 0.01–0.5 Hz (2–100 s period)

[Marchetti et al., 2013; Meier et al., 2016; Spina et al., 2016]

[Kremers et al., 2013; Battaglia et al., 2012; 2016]

VLPs: Strombolian gas slug ascent 

Yasur, Vanuatu Matoza et al. [2018]



Chouet [1996]
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1) Volcano-tectonic (VT) 2) Long-period (LP) [0.5-5 Hz]

Volcano seismology: signal classification 

Classification based on mechanism



Chouet [1996]
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1) Volcano-tectonic (VT) 

• Shear/tensile failure in brittle solid

• e.g., intrusions, loading and deformation

2) Long-period (LP) [0.5-5 Hz]

• Actively involve a fluid

Classification based on mechanism

Volcano seismology: signal classification 



Chouet [1996]
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1) Volcano-tectonic (VT) 

• Shear/tensile failure in brittle solid

• e.g., intrusions, loading and deformation

2) Long-period (LP) [0.5-5 Hz]

• Actively involve a fluid

• Includes LP events and tremor

Classification based on mechanism

Volcano seismology: signal classification 



Volcano-seismic sources 

x y

z
Mxx Mxy Mxz

Myx Myy Myz

Mzx Mzy Mzz

Moment-tensor

Moment-tensor Single-force vector • Represent arbitrary seismic source with equivalent point 

source: moment-tensor and single-force vector

• Moment-tensor: motion on generally orientated 

discontinuity (equivalent force couples)

• e.g., slip on a fracture or opening of a crack

• Single forces: mass advection

x y

z

Mxx

Mzz

x y

z

Myy

Mxz

Mzx

x y

z

x y

z

double-couple

horizontal crack opening

Chouet and Matoza [2013]

,



e.g., Luigi Palmieri 1856

“continuous tremor” at VesuviusSeismic

Volcanic tremor 

 Volcanic tremor:



Seismic

Acoustic

e.g., Luigi Palmieri 1856

“continuous tremor” at Vesuvius

e.g., Sakai et al. [1996]

infrasonic harmonic tremor at Sakurajima

Volcanic tremor 

 Volcanic tremor:



} “Seismo-acoustic”

Seismic

Acoustic

Volcanic tremor 

 Volcanic tremor:



a catch-all term for sustained seismic and acoustic signals 

associated with a wide range of volcanic activity

Volcanic tremor 

 Volcanic tremor:

multifarious : many and of various types; having or occurring in great variety



Not tremor

a catch-all term for sustained seismic and acoustic signals 

associated with a wide range of volcanic activity

Volcanic tremor 

 Volcanic tremor:

Not tremor Matoza et al. [2014]



p(t)

Tremor

a catch-all term for sustained seismic and acoustic signals 

associated with a wide range of volcanic activity

Volcanic tremor 

 Volcanic tremor:



• Harmonic

• Monotonic/monochromatic

• Spasmodic

• Eruption

• Banded

• Tremor storm

etc.? ...

e.g., Mcnutt [1992], Konstantinou and Schlindwein [2002]

a catch-all term for sustained seismic and acoustic signals 

associated with a wide range of volcanic activity

 Volcanic tremor:

Volcanic tremor 



Jagger/Omori: early 20th Century

Harmonic tremor: 

more rhythmic vibrations

Spasmodic tremor: 

irregular vibrations

Spasmodic vs. harmonic tremor 



Jagger/Omori: early 20th Century

Harmonic tremor: 

more rhythmic vibrations

Spasmodic tremor: 

irregular vibrations

Seismograms from Galeras, Colombia, Gil Cruz [1999]

Spasmodic tremor Harmonic tremor

Spasmodic vs. harmonic tremor 



Jagger/Omori: early 20th Century

Harmonic tremor: 

more rhythmic vibrations

Spasmodic tremor: 

irregular vibrations

Seismograms from Galeras, Colombia, Gil Cruz [1999]

Spasmodic tremor Harmonic tremor

Spasmodic vs. harmonic tremor 



seismogram:

excitation/trigger crack/conduit resonance

path & site effects

Seismic harmonic tremor: source vs. path effects 

Goldstein and Chouet [1994]

path & site

source

Bean et al. [2008]

Homogeneous model Near-surface layer model



Arenal, Costa Rica, Garces et al. [1998]

Seismic

Acoustic

Harmomic and monotonic tremor 



Arenal, Costa Rica, Lesage et al. [2006]

Seismic

Harmomic and monotonic tremor 
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Chouet [1996]
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1) Volcano-tectonic (VT) 

• Shear/tensile failure in brittle solid

• e.g., intrusions, loading and deformation

2) Long-period (LP) [0.5-5 Hz]

• Actively involve a fluid

• Includes LP events and tremor

Classification based on mechanism

Volcano seismology: signal classification 



Long-period (LP) events 

broadband onset
long-duration coda oscillation

TIME  (S)

Kusatsu-Shirane

Galeras

Kilauea

Redoubt

0 10 20 30 40 50 60

Figure  17

TIME  (S)
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0 10 20 30 40 50 60

Chouet and Matoza [2013]

LP events from volcanoes worldwide



Chouet [1996]
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• Individual LP events (transients) and 

certain types of tremor are closely linked

• LPs merge into tremor

• Collective term: long-period seismicity

2) Long-period (LP) [0.5-5 Hz]

• Actively involve a fluid

• Includes LP events and tremor

Classification based on mechanism

LPs and tremor 

[e.g., Latter, 1979; Fehler, 1983; Neuberg, 2011; Hotovec et al., 2012]



• Individual LP events (transients) and 

certain types of tremor are closely linked

• LPs merge into tremor

• Collective term: long-period seismicity

[e.g., Latter, 1979; Fehler, 1983; Neuberg, 2011; Hotovec et al., 2012]

Soufrière Hills Volcano, Montserrat, June 25th 1997

[Neuberg 2000; Green, 2005]

LP swarms

tremor

LP events

Time

LPs and tremor 



• Individual LP events (transients) and 

certain types of tremor are closely linked

• LPs merge into tremor

• Collective term: long-period seismicity

[e.g., Latter, 1979; Fehler, 1983; Neuberg, 2011; Hotovec et al., 2012]

Soufrière Hills Volcano, Montserrat, June 25th 1997

[Neuberg 2000; Green, 2005]

LP swarms

tremor

LP events

Dome collapse 

Time

 & pyroclastic flows

Paul Cole, MVO, 06/25/1997

LPs and tremor 



• Individual LP events (transients) and 

certain types of tremor are closely linked

• LPs merge into tremor

• Collective term: long-period seismicity

[e.g., Latter, 1979; Fehler, 1983; Neuberg, 2011; Hotovec et al., 2012]

Soufrière Hills Volcano, Montserrat, February 12th 1997

[Neuberg et al., 2000]

LPs and tremor 



Moran et al. [2008]

Mount St. Helens, WA November 2004; 48-hr seismogram ~2 km from summit

LPs and tremor 

• Highly repetitive LPs 

with regular inter-event 

times (“drumbeats”)

• May last for years in 

duration with slow 

evolution in event 

characteristics

Matoza and Chouet [2010]



LP events: repetitive waveforms 

2-hr mean 

stacks

Seed event
Final stack

Small LP events at Mount St. Helens

LP

small LPs

S04 HHZ
distance 1.1 km

LP

Matoza et al. [2015]



−155.3˚ −155.2˚

19.35˚

19.4˚

19.45˚

1 km

KILAUEA CALDERA

Halemaumau

NAMAKANI EARTHQUAKES

LPs

U
P
P
E
R

 S
O

U
T
H

W
E
S
T

R
IF

T
 Z

O
N

E

U
PPER

 EA
ST R

IFT ZO
N

E

19.35

19.40

19.45

La
titu

de

0 10 20
Depth (km)

20

10

0

De
pt

h 
(k

m
)

−155.3 −155.2
Longitude

relocated

• LP source location remarkably stable from 1986 to 2009: structurally controlled

LPs
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LP events: stable source locations 

Matoza et al. [2014]



LPs as the impulse response of the resonant tremor system 

…

see also Jousset et al. [2003]; finite-difference solution of conduit resonance

Chouet [1985]

Fehler [1983]

Fehler [1983]



…
…

LPs as the impulse response of the resonant tremor system 

Fehler [1983]

Fehler [1983]

figure: Kumagai and Chouet [2000]

Chouet [1988]



LPs: the fluid-driven crack model 

broadband onset
long-duration coda oscillation
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Figure  17
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Chouet and Matoza [2013]



trigger/excitation
fluid response

TIME  (S)

Kusatsu-Shirane

Galeras

Kilauea

Redoubt

0 10 20 30 40 50 60

Figure  17

TIME  (S)

Kusatsu-Shirane

Galeras

Kilauea

Redoubt

0 10 20 30 40 50 60

Chouet and Matoza [2013]

LPs: the fluid-driven crack model 

• Impulsive trigger: discrete LP event

• Sustained trigger: tremor



trigger/excitation
fluid response

TIME  (S)

Kusatsu-Shirane

Galeras

Kilauea

Redoubt

0 10 20 30 40 50 60

Figure  17

TIME  (S)

Kusatsu-Shirane

Galeras

Kilauea

Redoubt

0 10 20 30 40 50 60

Chouet and Matoza [2013]~100 m

trigger (arbitrary)

Resonant response
• Fluid-filled crack or conduit
• Bubbly magma, water, steam, dusty gas

LPs: the fluid-driven crack model 

“Crack waves” 
Solid-fluid 
interface 
waves; 
fluid-filled crack 
in elastic solid



Chouet and Matoza [2013]

“Crack waves” 
Solid-fluid 
interface 
waves; 
fluid-filled crack 
in elastic solid

~100 m

trigger (arbitrary)

Resonant response
• Fluid-filled crack or conduit
• Bubbly magma, water, steam, dusty gas

LPs: the fluid-driven crack model 

Data (Galeras 1993)

Synthetic

Chouet [1996]



LPs: the fluid-driven crack model 

broadband onset
long-duration coda oscillation
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Chouet and Matoza [2013]

• What excites the resonance?

• Impulsive trigger: discrete LP event

• Sustained trigger: tremor

The trigger mechanism



trigger/excitation
fluid response
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Chouet and Matoza [2013]

LPs: the fluid-driven crack model 

arbitrary pressure step function

• What excites the resonance?

• Impulsive trigger: discrete LP event

• Sustained trigger: tremor

The trigger mechanism



Chouet [1996]

LPs: the fluid-driven crack model 

• Interpretation: shallow LP 

seismicity results from the 

pressure-induced disruption 

of a shallow hydrothermal 

region

• “can accordingly be a 

useful indicator of 

impending eruption”



LPs: trigger mechanism in magmatic-hydrothermal systems 

Nakano et al. [2003]

Cyclic recharge-collapse of a hydrothermal crack

e.g., Ohminato [2006]; Waite et al. [2008]; 

Matoza et al. [2009]; Matoza and Chouet 

[2010]; Maeda et al. [2013]

Schematic of Kusatsu-Shirane, Japan

LP

small LPs

S04 HHZ
distance 1.1 km

LP



LPs: infrasonic pulse associated with trigger 

infrasound

seismic

Vp = 3500 m/s

c = 330 m/s

Matoza et al. [2009]; see also Yamasato [1998]; Petersen and McNutt [2007]

time-delay

time-delay

time-delay removed
infrasound

seismic 


vertical vel.

seismic 


vertical disp.

• Broadband infrasonic pulse arrives 

time-delayed from seismic LP arrival

• Captures a record of the “trigger” 

portion of the LP waveform



• Heating from magmatic activity


• Pressure rises in hydrothermal crack


heat/hot volatiles

weathered/porous layer

LPs: infrasonic pulse associated with trigger 

Waite et al. [2008]; Matoza et al. [2009]



• Heating from magmatic activity


• Pressure rises in hydrothermal crack


• Reach threshold for rupture of “valve” 

sealing crack


• Pressure release: infrasound signal

heat/hot volatiles

weathered/porous layer

LPs: infrasonic pulse associated with trigger 

Waite et al. [2008]; Matoza et al. [2009]



heat/hot volatiles

weathered/porous layer

LPs: infrasonic pulse associated with trigger 

• Heating from magmatic activity


• Pressure rises in hydrothermal crack


• Reach threshold for rupture of “valve” 

sealing crack


• Pressure release: infrasound signal


• Collapse of crack: imaged in seismic 

waveform inversion


• Resonance of crack: LP coda


• Re-sealing of “valve”, cyclic recharge, 

periodic “drumbeats” 

Waite et al. [2008]; Matoza et al. [2009]



Mount St. Helens 2004–2008 eruption 

Iverson et al. [2006] Nakano et al. [2003]

Solid extrusion, plug stick-slip Cyclic recharge-collapse of a hydrothermal crack

e.g., Iverson et al. [2006]; Harrington and Brodsky  [2007]; 

Iverson [2008]; Kendrick et al. [2014]

e.g., Waite et al. [2008]; Matoza et al. [2009]; 

Matoza and Chouet [2010]

Schematic of Kusatsu-Shirane, Japan



Mount St. Helens 2004–2008 eruption 

Iverson et al. [2006]

Solid extrusion, plug stick-slip

e.g., Iverson et al. [2006]; Harrington and Brodsky  [2007]; 

Iverson [2008]; Kendrick et al. [2014]

J.S. Pallister, USGS

Slickensides, soft gauge 1-3 m thick



Magmatic degassing 

[Gil Cruz and Chouet, 1997]

Galeras, Colombia, 1991

Matoza et al. [2019]

Popocatépetl, Mexico, 2017



Brittle failure of melt 

Tuffen et al. [2008]
Neuberg et al. [2006]

• Brittle failure of melt in the glass transition

• Multiplets: repeated fracture and heal or ascent through a limited seismogenic window



Robin S. Matoza
Department of Earth Science; University of California, Santa Barbara

Seismo-acoustic signals associated with 
volcanic processes III

image: Tyson Fisher

D. Fee A. Austin A. AustinN. Key



Volcano seismology and acoustics

• Atmospheric acoustics (infrasound): ~0.01-20 Hz

• Variety of shallow and subaerial sources 

• Explosive volcanism: powerful signals

Seismic

• Migration of fluid from mantle depths to surface

• Faulting & fluid transport in the solid earth

• Limited propagation < few hundred km

Acoustic
(infrasound) Seismic

Acoustic



Arenal, Costa Rica, Garces et al. [1998]

Seismic

Acoustic

Harmomic and monotonic tremor 
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Explosions + Harmonic tremor

Harmonic tremor

Sub-plinian eruption

Plinian eruption

~2 km

Matoza et al. [2010]

Pu`u O`o: Bubbly flow/degassing/
helmholtz resonance

Tungurahua
image: El Comercio / Ecuador / GDA

Harmomic and monotonic tremor 

Goto and Johnson [2011]

Villarrica



Resonance

gas/steam or air

magma

Acoustic harmonic tremor: Conduit resonance

Shallow conduit resonance



Garces [2000]

Analytic solution for airborne 
sound from a resonant magma 
conduit

From: Buckingham and Garces [1996] 

to: Garces [2000]

ResonanceAcoustic harmonic tremor: Conduit resonance

Shallow conduit resonance



Key question #1: how does sound couple from the magma conduit into the air?

ResonanceAcoustic harmonic tremor: Conduit resonance

Shallow conduit resonance

1. Diaphragm-like motion of the magma surface 

[Buckingham and Garces, 1995] 
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[Buckingham and Garces, 1995] 

2. Low sound speed layer near the surface is more 

efficient [Garces and McNutt, 1997] 
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2. Low sound speed layer near the surface is more 

efficient [Garces and McNutt, 1997] 

3.High effective viscosity of the bubbly region 

overly attenuates sound [Marchetti et al., 2004]



Key question #1: how does sound couple from the magma conduit into the air?

ResonanceAcoustic harmonic tremor: Conduit resonance

Shallow conduit resonance

1. Diaphragm-like motion of the magma surface 

[Buckingham and Garces, 1995] 

2. Low sound speed layer near the surface is more 

efficient [Garces and McNutt, 1997] 

3.High effective viscosity of the bubbly region 

overly attenuates sound [Marchetti et al., 2004]

4.“Anomalous transparency” of the magma-air 

interface at infrasonic frequencies [Matoza et al., 

2010, Godin 2006, 2007]

bubbly magma with high void fraction



Key question #1: how does sound couple from the magma conduit into the air?

ResonanceAcoustic harmonic tremor: Conduit resonance

Shallow conduit resonance

1. Diaphragm-like motion of the magma surface 

[Buckingham and Garces, 1995] 

2. Low sound speed layer near the surface is more 

efficient [Garces and McNutt, 1997] 

3.High effective viscosity of the bubbly region 

overly attenuates sound [Marchetti et al., 2004]

4.“Anomalous transparency” of the magma-air 

interface at infrasonic frequencies [Matoza et al., 

2010, Godin 2006, 2007]
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liquid magma/water

bubbly magma

Upper few tens of meters couple well into atmosphere
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Resonance Helmholtz resonance: e.g., Halema`uma`u

cross-sectional area of neck

effective neck length cavity volume

For wavelengths larger than the dimensions of the volume: 
Helmholtz resonance 

of a conduit/cavity 

Fee et al. [2010]



Resonance Helmholtz resonance: e.g., Halema`uma`u

cross-sectional area of neck

effective neck length cavity volume

For wavelengths larger than the dimensions of the volume: 
Helmholtz resonance 

of a conduit/cavity 

Fee et al. [2010]



1. Bubble cloud oscillation [Chouet, 1996; Matoza et al. 2010]

2. Density-driven oscillations of the bubble column [Ripepe et al. 2010]

Ripepe et al. [2010] after Mudde [2005]

Villarrica, Chile

Key question #2: what drives the oscillation?

ResonanceAcoustic harmonic tremor: Conduit resonance

Shallow conduit resonance



Pu`u O`o seismic and infrasonic tremor 

KIPU 

Napau Crater Pu`u O`o 

2.4 km

image: HVO/USGS



Pu`u O`o seismic and infrasonic tremor 

Matoza et al. [2010]



Valade et al. [2012]

e.g.,
Gil Cruz and Chouet [1997]
Hellweg [2000]
Johnson and Lees [2000]
Lesage et al. [2006]
Valade et al. [2012]
Girona et al. [2019]

...can be coupled with 

and controlled by upper 

conduit/cavity 

resonance

Hagerty et al. [2000]
Lesage et al. [2006]
Matoza et al. [2010]

Seismo-acoustic harmonic tremor

Degassing through sealed caps
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Explosive volcanism: source processes



Explosive volcanism: source processes

Sparks [1986]

jet flow



Explosive volcanism: source processes



Explosive volcanism: source processes

movie: David Fee, UAF



Infrasonic volcanic jet noise 

• Noise from the exhaust flow of jet engines and rockets

• Studied for noise and vibration control in mechanical and aerospace engineering

Sparks [1986]

Jet noise from flight vehicle exhaust Natural large-scale jet flow (gas-thrust)

F-22, K. Gee

jet flow

jet flow

• Hypothesis: noise-generation mechanisms scale 

up to volcanic length-scales Matoza et al. [2009; 2013]; 
Fee et al. [2013]



Infrasonic volcanic jet noise 

Fits of the LST similarity 

s p e c t r u m ( r e d ) t o 

acoustic data (black) 

from 3 laboratory jets: 

Mach numbers 0.60, 

0 . 7 5 , 0 . 9 ; w i t h 

temperature ratios of 

1.0, and r/D j = 30, 

where r = 1.5 m, Dj = 5 

cm. Data from Koenig et 

al., [2010, 2011].



Hypotheses 

Volcanic jet noise likely deviates from pure-air laboratory 

jets because of, e.g.,

1.Multiphase flow (e.g., tephra particles)

2.Nozzle/crater geometry and roughness

3.High-temperature and density effects

4.Buoyancy effects

Tungurahua Volcano, Ecuador

image: P.A. Ramon, IG-EPN

Redoubt Volcano, AK

image: C. Waythomas AVO/USGS



Jet noise directionality 

• Known that jet noise is highly directional 

      (does not radiate sound equally in all directions)

θ

Noise from 

large-scale 

turbulence

Noise from 

fine-scale 

turbulence

Nozzle

Tam et al., [2008]



1. Acoustic power       estimates require sampling of jet directionality

Laboratory study of jet noise [Gee et al. 2010]

Consequences of jet noise directionality 



Field study of jet noise from a large solid rocket motor [Gee et al. 2013]

Consequences of jet noise directionality 

1. Acoustic power       estimates require sampling of jet directionality



θ

Infrasound sensor

1. Acoustic power       estimates require sampling of jet directionality

Consequences of jet noise directionality 

Matoza et al. [2013]
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Matoza et al. [2013]

2. Acoustic intensity should be used instead (power per unit area)
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Velocity exponent is a non-linear function of:

1) Angle from the jet axis

2) Temperature

Contrast Woulff and McGetchin: 4, 6, or 8

Results from pure-air jet noise studies:
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What are the exponents for acoustic intensity for a volcanic jet?

What are the effects of ...

1. Ash & multiphase flow?

2. High temperatures, densities?

3. Complex vents and craters?

R. Krimmel, USGS

We must address by integrating:

1. Field studies

2. Laboratory modeling

3. Numerical modeling

Implications for volcano acoustics

Results from pure-air jet noise studies:
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Surficial mass movements at volcanoes 

Allstadt, K.E., R.S. Matoza, A.B. Lockhart, S.C. Moran, J. Caplan-Auerbach, M.M. Haney, W.A. Thelen, and S.D. Malone (2018), Seismic and acoustic 

signatures of surficial mass movements at volcanoes, J. Volcanol. Geotherm. Res., 364, 76-106, doi:10.1016/j.jvolgeores.2018.09.007



Volcano Seismo-Acoustics: Future Directions

Reanalysis of key data sets with new auto-

  classification tools – comparison to SO2, 

  tectonics, hydrothermal systems, etc.

 Integrated multi-parametric constraints on 

volcanic ground water systems

 Multi-parameter quantification of eruption 

columns
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