## Stresses\* preserved in crystals

#### Measuring magmatic stresses with $\mu$ XRD and Raman

Kenneth S. Befus (Baylor University) with collaborators Michael Manga (UC-Berkeley) and Miguel Cisneros (ETH)



#### Forces matter. Maybe here too "crystals remember what the liquid and gas forgets."







#### Synchrotron µXRD at the Advanced Light Source, Lawrence Berkeley National Lab



#### µXRD in Laue diffraction mode produces pattern of spots that relate to lattice spacing



Quartz standard

#### Quartz from Tuff of Bluff Point, Yellowstone

Befus and Manga (in review)

#### Example measurement from Huckleberry Ridge Tuff quartz from Yellowstone caldera



#### μXRD measures many crystallographic parameters. Here strain and orientation are shown.



|                                                                                                              | Unit cell (Å) |     |                | Α   | Axial angles (°) |     |                              |  |
|--------------------------------------------------------------------------------------------------------------|---------------|-----|----------------|-----|------------------|-----|------------------------------|--|
|                                                                                                              | a。            |     | с <sub>о</sub> | α   | β                | γ   |                              |  |
| βquartz                                                                                                      | 4.997         | 7 ! | 5.457          | 90  | ) 90             | 120 | )                            |  |
| <b>Hooke's Law:</b> $\sigma'_{ij} = c_{ijkl} * \epsilon'_{kl}$<br>$\epsilon = \text{measured strain tensor}$ |               |     |                |     |                  |     | s tensor<br>tensor<br>tensor |  |
| Elastic stiffness constants (GPa)                                                                            |               |     |                |     |                  |     |                              |  |
|                                                                                                              | c11           | c12 | c13            | c14 | c33              | c44 | c66                          |  |
| β quartz                                                                                                     | 120           | 10  | 35             | -   | 116              | 40  | 50                           |  |

#### Huckleberry Ridge Tuff preserves a homogenous distribution of residual stress



Befus and Manga (in review)

#### What forces make volcanoes eruption?

- 1. Shear during lava transport
- 2. Shear during conduit transport
- 3. Impacts during pyroclastic processes
- 4. Energic fragmentation, or lack thereof
- 5. Crystal-crystal impingement



### Test influence of pyroclastic processes using quartz from the Bishop Tuff, CA



#### Pyroclastic processes do not modify residual stresses in the Bishop Tuff



#### Test influence of surface emplacement using quartz from Summit Lake lava flow



#### What forces make volcanoes eruption?



2. Shear during conduit transport

**3.** Impacts during pyroclastic processes

4. Energic fragmentation, or lack thereof

5. Crystal-crystal impingement



#### Possibility #1: Force Chains in a crystal mush



### Possibility #2: Stresses during brittle fragmentation





### Timing of brittle fragmentation



#### Raman thermobarometry: Imagine how the inclusion feels



#### Raman spectra of albite measured in a diamond anvil cell





#### Minerals display systematic wavenumber shifts with increasing pressure



The math part: elastic model to calculate entrapment conditions

$$P_{\text{incl}} = 1 - \frac{4\mu}{3} \left( \frac{V_{\text{host}}^{298,1 \text{ bar}}}{V_{\text{host}}^{T,P}} - \frac{V_{\text{incl}}^{298,P_{\text{incl}}}}{V_{\text{incl}}^{T,P}} \right)$$

Guirard and Powell (2006) Kohn (2014) Ashley et al. (2017)



## **ISOMEKE CALCULATOR**

#### SET COMPOSITIONS Isomeke Graph Set mol% compositions of the Inclusion and Host phases. Use multiple components if necessary to account for solid solution. Inclusion 1 -Albite • 1 0.9 Component 2 0 . 0.8 Component\_3 ٠ 0 0.7 9.0 ¥ Host Pressure 0.5 Garnet Almandine • 1 0.4 Component 2 0 • 0.3 Component\_3 • 0 0.2 0.1 SET P-T VARIABLES 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 600 °C **Entrapment Temperature** Temperature (C) Pressure in Inclusion (from Raman) 2 kb Set Pressure Axes 20 kb 0 °C 0 kb 0 to Active Calculation Step **Entrapment Pressure** 0.0 kb Set Temperature Axes 400 to 1000 °C

In context of ~5000 combinations of solid mineral inclusion thermobarometry



Cisneros, Befus, Darnell (in revisions)

#### Case study: Diamonds from the world's last wild place (Guiana Shield, Guyana)

![](_page_23_Figure_1.jpeg)

# Conclusions:

Stresses in crystals

- 1. Solid mineral inclusion thermobarometry is approaching wide applicability.
- 2. Volcanic crystals preserve residual elastic stresses giving new insight to subsurface processes.
- 3. Exciting new technologies to apply to challenging geologic problems.