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New Cases of Unexplained Kidney Disease per 1,000 Workers

Right: Tephra fallout and kidney disease in
Nicaragua. Data courtesy of Kristy Murphy
(Texas Children's Hospital)

;LT

0
1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

Japan Court Orders Shutdown of
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Top:Panabaj (Guatemala) debris flow (from
Charbonnier et al., 2018).
Right: Aso volcano and the Ikata NPP
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What hazardous phenomena are likely to occur associated
with volcanoes?

How frequently do they occur, or how likely are they in
some timeframe?

What areas are potentially impacted and how?

Howel Williams (Williams and McBirney, 1979):
Long-term volcanic hazard assessment - Primarily based
on the geologic record and analogous volcanoes (should
take place well in advance of unrest!)
Short-term volcanic hazards assessment - incorporates
data on volcanic unrest, uses geophysical signals and
related data to forecast the timing and nature of volcanic
eruptions.
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Are hazards “‘high” or “low”? It depends who you are and
what your problem is!

volcano monitoring
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For example, 10~ annual probability of lahar inundation is a very
low hazard for an 80yr old person, and a very high hazard for a 10yr
old person (Connor, 2011, Numeracy).
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iiii il“ii“iiiiﬁi EE i % Volcanic hazards in lceland. 2008

volcanic hazards in Iceland, based on the location and nature of

past events. (e.g., data center / server farm)
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Conditional probability of inundation by PDCs, Campi Flegrei

c) S 95" percentile

from Neri et al., 2015
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Event tree for renewed activity at Vesuvius (Neri et al. , 2008):
P[subplinian|unrest] = P[N3|N1]P[N3|Na]...
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Develop a conceptual model of how the volcano and its
magmatic system work, What types of activity are
possible, given how magma is stored and ascends in a
particular system?

Assess rates of activity, using historical observations,
radiometric dates, stratigraphy. Short-term forecasts are
sensitive to changes in unrest and anticipate changes in
activity

Assess the potential location of activity based on
statistical analysis of past vents and/or monitoring
Assess the potential magnitude of activity, inferred from
volumes of past events or magnitude of signals.

Assess the potential impacts of activity using geologic
record and numerical models.
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Cornell (1968), Cornell and Hanks (1994), Stirling et al., (2009)

Step 1: EARTHQUAKE SOURCES

Fault

(Line source) Point

/ source

source

Step 2: RECURRENCE MODEL

Log. of No. of Earthquakes > M

Magnitude M

Step 3: GROUND MOTION ATTENUATION

Uncertainty in
attenuation

% . Magnitude

Peak Acceleration

Distance

Step 4: PROBABILITY OF EXCEEDANCE

Probability of Exceedance

Acceleration

P[G > g|At] = P[G > g|M|P[M|z, y| Pz, y|At]
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=l Building a probabilistic volcanic hazard assessment
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STAGE 1 STAGE 2 STAGE 3 STAGE 4

Initial Characterize Hazards pecific
Scoping Volcanic Sources Screening Assessment

Volcanism Current Potential For Develop
Capable
<10 Myr Yes > Activity? Yes »  Volcanic Yes Volfanoef Site-Specific
In The Region? Hazard To Volcanic
No Reach Site? Hazard
Y
Activity Since Models
0.01 Myr?
No No No
Y
Is Future
Activity Credible?
No
h 4 A 4 v

p 4 Y
Volcanic Events are Not Credible Hazards; Site Suitability Decision;
No Further Investigation Warranted. Inputs For Design Bases.

see: IAEA (2012) Volcanic Hazards in Site Evaluation for Nuclear Installations. International Atomic Energy
Agency, Vienna. |IAEA Safety Standards Series No. SSG-21. IAEA (2016) Volcanic Hazard Assessments for
Nuclear Installations: Methods and Examples in Site Evaluation. IAEA Techdoc Series No. 1795.

PVHA



PVHA

Background

Conceptual
model

Rates
Location
Magnitude
Impacts

Future

Initial Scoping: Basin and Range volcanism near
Yucca Mountain (NV)

© Are there volcanoes in
the site region and
how old are they?

© Is the tectonic setting
consistent with future
volcanism?

Legend
Basalt Units
I Quaternary
. [ Piiocene
from Valentine and Perry 0 Miocene

(2009) Buried Basalts

Miocene
Unknown age
—— Caldera boundary|
®  Drill hole

116'45°W
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Are there volcanoes in the site region and how old are they? Is the
tectonic setting consistent with future volcanism? (Figure by
WesternGeco, 2018, with permission from JAEC)
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Consider potential for specific volcanic products in
characterizing sources. Develop a conceptual model of
potential volcanic activity based on geologic record, analog
volcanic systems:

Phenomena exclusionary? migitation?
Opening of new vents Yes No
Sector Collapse Yes No
Pyroclastic density currents Yes No
Lava flows Yes No
Lahar Yes Yes
Tephra fallout No Yes
Volcanic gases No Yes
Volcanic earthquakes No Yes
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Pyroclastic surges, tephra

fallout, and damming of Rhine:
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From Park and Schmincke, 1997
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What volcanic hazards do residents of Ischia face given the nature of
volcanic activity during the last 150 ka?

a)

From Selva et al., 2019, JAV
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Given a volcanic eruption, is it possible specific volcanic phenomena
can reach the site?

Low-aspect ratio ignimbrites and
lava flows reach the Armenia
Nuclear Power Plant site.




Given a volcanic eruption, is it possible specific volcanic phenomena
can reach the site?
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Given a volcanic eruption, what are the possible impacts?
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Kazuhiro Nakamoto, President, Japan Federation of Bar Associations

Today, the Hiroshima High Court handed down a temporary
injunction compelling Shikoku Electric Power Corporation to stop
operation of the No. 3 reactor of the lkata Nuclear Power Plant. The
decision was made according to the evaluation procedures in the
volcanic eruption guidelines set by the Nuclear Regulation Authority
(NRA). It was found that it was difficult to judge whether the
volcanic activity of the Mt. Aso caldera, located 130 kilometers away
from the lkata NPP, was weak enough during the operation of the
reactor. As it is impossible to estimate how big an eruption of Mt.
Aso would be, the judgment took the largest past eruption of Mt.
Aso “Aso-4" about 90,000 years ago) (volcanic explosivity index 7)
as the basis for its assumption. The court found that it cannot
conclude that the Aso-4 pyroclastic flow was very unlikely to
reach lkata NPP, and therefore judged that the lkata NPP was
not located in an appropriate location.
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When eruption frequency is PR R—— =]
stationary, it is possible to ' FH
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Calculate stationarity within
some confidence interval:
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Bebbington, 2013, Connor et al.
2015, Watson et al. ,2017
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Frequency of explosive eruptions at Momotombo volcano
(Nicaragua) measured during Feb—April, 2016
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Probability model must (1) use a subset of data, or (2) detrend the
data, or (3) use a cluster or renewal model). One cannot apply a
univariate model, like an exponential model, to nonstationary
distributions (data from INETER, Armando Saballos).
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125 1200 —115° —121'E —120° 119’

Vents and lava flows in the caldera of Arsia Mons are among Mars'
youngest volcanoes. How do we constrain the timing of these
eruptions? Richardson et al., EPSL, 2017
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Context Imager (CTX) datasets are used to map stratigraphic
relationships within the caldera at the summit of Arsia Mons.
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98:27 218110 10219 14818
v

00 v09 v10
T 117+12
v02

126:18

v04

Key age
cn.'erlg‘(iné;ﬂme
58424
unit v28
mapped
straigraphic
relationship

underl_{fng
une

112425

V26T w27
Stratigraphically Lower
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Randomly sample ages of all events using directed graph

(M = 10000 times),

Volcano i of total N formed by event é;,

For each set of age estimates, j, for N volcanoes, the cumulative

distribution is:
N

X;(T) =) Plés;t <T]
i=1
where P[é; ;,t <T]=0if T <é;; and P[é ;,t <T]=1if

T2>é;,
LM
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Mars Volcano, Earth’s Dinosaurs Went Extinct IR
About the Same Time
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Approximate eruption age (ka)

TB-TA: trachy-basalt trachy-andesite
TD: trachy-dacite

Main concern: is there no activity in the last 400 ka? Or is there a
lack of preservation of smaller eruptions?
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Cumulative density of eruptions

0K I i I 1 I I I 1
700 500 300 100

Time before present (ka)

Cumulative distribution function of Aragats eruptions.
Steady-state activity until about 0.5 Ma, after which no
eruptions are identified.
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Current Recurrence
magmatic  Extinct? rate of
system episodes

Node Recurrence Rate (yr=!) Wt

Ng,l >5x107° 0

1-P1 N3 >05—5x107° 0.1
=, N33 0.9—-5x107° 0.45
N3’4 <9x1077 0.45




logic tree for pdcs impacting the site

Current Recurrence
PVHA magmatic  Extinct? rate of Ignimbrite?
system episodes

Reach
site?
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Range Weight RR Weight Weight Weighted
(HIgh/LOW) (w211,4) (yl’il) (1 — w371,3) (1 — 11)/1) Probability
H 0.10 5e-05 0.67 1 3.3x10°°
L 0.10 5e-06 0.33 1 1.6 x 1077
H 0.45 5e-06 0.10 1 2.2x1077
L 0.45 9e-07 0.10 1 4%x1078
H 0.45 9e-07 0.01 1 4%x107°

Aggregate Annual Probability = 2 x 1077 - 3.5 x 106
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spatial density of volcanic vents




Along-arc variations in volcano spatial density

Alternative probability density models for volcanism along the
PVHA Tohoku arc
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s o Along arc tomographic anomalies

PVHA Probability
(using LSCV bandwidth)

68x10°
Background

48x10%
Conceptual

model —_—

Rates 16x10%

43x10*
. 1.2x10*
Location

Magnitude
Impacts

Future

Slowness, AV,,/V,, at
40 km, Zhao (2001),
Martin et al. (2004)
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George et al., 2016
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gravity anomalies indicate a large
mid-crustal reservoir, which

accounts for observed basement

uplift and deformation rate.
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Along-arc variations in volcano spatial density

Alternative probability density models for volcanism along the
PVHA Tohoku arc

139,

Probability

(using LSCV bandwidth)
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Conceptual
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Schmandt et al. (2012)
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11w 14°W 11°W
Hazard Annual Probability (vents) Annual Probability (Events)
Eruption on the ESRP 5.7 x 10”4 2.6 x 1074
Eruption in INL 1.2 x 1074 6.2 x 1075
Lava Inundation of INL 1.8 x 104 8.4 x 1072

see Gallant et al (2018)
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Development of Bayes' network, or Bayesian belief network:
P[magma unrest | increase in SO3] # P[increase in SOz | magma

unrest]

(a) An elementary BBN for magmatic unrest leading to eruption

Query node (outcome) -
wish to infer probability of
eruption P(Y3|Xy). This is
observable in the future.

Arcs - amows indicate
direction of influence
or causality

Hidden node - process
at depth not directly
observable, inferred
from observations Y,
and Y,

Y2
Phenomena 2
e.g seismicity

1
Phenomena 1
e.g.

Observables - activity caused by magmatic unrest

X={X;} Hidden state(s)
U ={u,, u,, u3} Arcs (links between nodes)
Y ={Y1. Y2 Y3} Observables

(b) Logic tree formulation of the BBN in (a)

UK 2 Outcome
e.g seismicity

unrest? eg. SO,

not directly Eruption
observed but
observed

from Hincks et al. (2014)
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probability networks

e A BNN for Martinique “crisis” of 1979
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Markov model (MCMC) forecasting changes in eruption style
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from Jenkins and Bebbington,
2019)
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Long-term volcanic hazard assessment must become more
widespread to plan for volcanic activity, in all its forms,
before it affects communities and infrastructure.
Probabilistic volcanic hazard assessment relies on a simple
hierarchical structure (e.g., logic trees). What new
structures should emerge?

PVHA places a premium on geologic data collection,
especially radiometric age determinations and mapping,
and numerical models of volcanic processes.

Major challenge is to improve monitoring to identify
potentially active volcanic systems before “unrest”.
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IAEA: S. Aramaki, W. Aspinall, S. Charbonnier, A.
Chigama, O. Coman, L. J. Connor, A. Costa, L.
Courtland, H. Delgado Granados, A. Godoy, B. Hill, C.
Jaupart, J.-C. Komorowski, A. McBirney, S. McNutt, K.
Meliksetian, S. Nakada, C. Newhall, G. Pasquare, I. Savov,
S. Self, Y. Uchimyama, T. Wilson

Jacob Richardson, Lis Gallant, Graeme Swindles, Elizabeth
Watson, Armando Saballos, Kristy Murphy, Mike Sheridan,
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