

Fall deposits

- 1) classical in situ (bulk) characterization
- 2) limitations and pitfalls of this approach
- 3) emerging approach in-flight parameterization

Bruce Houghton, Sébastien Biasse, Jacopo Taddeucci Caroline Tisdale, Brett Walker, Bianca Mintz

Terminology

PYROCLAST: volcanic rock fragment ejected by an explosive eruption

Tephra: collective term for airborne volcanic ejecta irrespective of size, composition or shape – *Thorarinsson* 1944

Why study fall?

The simplest of pyroclastic deposits Unrivalled for inferring eruption source parameters

- proxies for magnitude, intensity
- proxies for eruption style

The most widespread of natural hazards

What do falls record ?

deposits.

eruption dynamics I eruptive history

Eruption Source Parameters II eruption scenario

Cotopaxi 5

Tephra fall: characterization sheet

Thinning of fall deposits

DISPERSAL: how rapidly the deposit thins

Aniakchak caldera

note the two contrasting dispersal patterns in the picture

ISOPACHS of contrasting intensity

Deposits in nature

Paladio-Melosantos et al. [1996]

Pinatubo (Philippines) 1991 Ht: 42 km (Rosi et al. 2000)

Quantitative analysis

thickness vs 1) distance from vent, or

2) area within an isopach

Walker 1971

- 1. Recognize and correlate layers
- 2. Measure thickness
- 3. Constrain deposit geometry

Layer 5 of Cotopaxi volcano in Ecuador

Barberi et al, 1995; Biass and Bonadonna, 2011

- 6. Fit:
 - One or multiple **exponential** segments
 - Deposit exposure may obscure identification of multiple segments
 - One segment underestimates max thickness
 - $y = T_0 e^{kx}$
 - T₀: Thickness at intercept
 - k: Thinning rate
 - Power-law
 - Extrapolates thickness in proximal and distal regions
 - Sometimes unconstrained

7. Calculate volume by integrating area below curve. For 1 exponential segment:

$$V = \frac{2T_0}{k^2}$$

•
$$\mathbf{T}_{\mathbf{0}}$$
 = intercept, \mathbf{k} = thinning rate, \mathbf{V} = volume (m³)

8. Calculate thickness half distance \mathbf{b}_{T} as:

• Typically assumed between 500-1500 $\mbox{kg/m}^3$

Exponential treatments:

- 1 exp. segment (Pyle 1989)
- 2 exp. segments (Fierstein and Nathenson 1992, Pyle 1995) -
- >2 exp. segments (Bonadonna and Houghton 2005)
- One proximal isopach line (Legros 2000)
- Thickness measurements (Burden et al. 2013)

PROBLEM: underestimation of volume in case of missing distal segment(s)

Power law relationships

- Extrapolates thickness in proximal and distal regions
- Sometimes unconstrained

PROBLEM: choice of integration limits

(Bonadonna and Houghton 2005)

- Volume \rightarrow VEI
 - Log volume of tephra
 - Designed for communication

VEI	0	1	2	3	4	5	6	7	8
General Description	Non- Explosive	Small	Moderate	Moderate- Large	Large	Very Large			
Volumn of Tephra (m ³)	1x	10 ⁴ 1x	10 ⁶ 1x	10 ⁷ 1x1	0 ⁸ 1:	x10 ⁹ 1x10	0 ¹⁰ 1x10	¹¹ 1x10	012
Cloud Column Height (km) Above crater Above sea level	<0.1	0.1-1	1-5	3-15	10-25		 >25	1	
Qualitative Description	"Gentle,"	"Effusive"	← "Exp	losive">-		Cataclysmic," * Severe," *viole	paroxysmal," ent," "terrific"	"colossal"	-
Eruption Type (see fig. 7)	← Hav	← Stron vaiian →	nbolian>	← Vulcaniar	n ——;	— Plinian — ><	- Ultra-Pli	nian —	
Duration (continuous blast)	<	<1	hr ≼	— 1-6 hrs ·	- 6-12 hrs	>>	>12 hrs —		
Maximum explosivity	Lava flow	-	Phreatic -	E	plosion or	Nuée ardente		de tatile	
	Dome or n	nuatiow							
Tropospheric Injection	Dome or n Negligible	Minor	Moderate	Substantial					
Tropospheric Injection Stratospheric Injection	Dome or n Negligible None	Minor None	Moderate None	Substantial Possible	Definite	Significant			

- Volume \rightarrow VEI
 - Log volume of tephra
 - Designed for communication
- Problem 1:
 - Only explosive

VEI	0	1	2	3	4	5	6	7	8
General Description	Non- Explosive	Small	Moderate	Moderate- Large	Large	Very Large			
Volumn of Tephra (m ³)	1x	10 ⁴ 1x	10 ⁶ 1x	10 ⁷ 1x1	10 ⁸ 1)	(10 ⁹ 1x	10 ¹⁰	1x10 ¹¹	1x10 ¹²
Cloud Column Height (km) Above crater Above sea level	<0.1	0.1-1	1-5	3-15	10-25	 <		 >25	i
Qualitative Description	"Gentle,"	"Effusive"	← "Exp	losive">-	<u> </u>	ataclysmic," Severe," "vio	"paroxysi lent," "ter	mal," "cole rific" —	ossal" —
Eruption Type (see fig. 7)	← Hav	← Stron vaiian →	nbolian>	← Vulcaniar	n ——;	— Plinian - ><	Ultr	a-Plinian -	
Duration (continuous blast)	<	<1	hr ≼	→ 1-6 hrs ·	<	>>	- >12 hrs	teres and	pa kana
Maximum explosivity	Lava flow Dome or n	<	Phreatic —	E	xplosion or	Nuée ardente			-
Tropospheric Injection	Negligible	Minor	Moderate	Substantial					
Stratospheric Injection	None	None	None	Possible	Definite	Significan			2 1121
Eruptions	976	1239	3808	1083	412	168	50	6	0

- Volume \rightarrow VEI
 - Log volume of tephra
 - Designed for communication
- Problem 1:
 - Only explosive
- Problem 2:
 - Stepwise function
 - **Magnitude**: $\log_{10}(mass [kg]) + 7$
- Problem 3:
 - Something missing?

Isomass: alternative for thin or distal deposits

1 m2

Measure mass over a known surface area

Isomass: lateral margins

2. far east margin: 1 g m⁻²

1. eastern margin: 22 g m⁻²

mm thick. equivalent

Tephra fall: characterization sheet

Fining of fall deposits

Sedimentation from volcanic plumes

Settling laws for volcanic plumes

 $V_t \approx (g\rho d^2/18\mu)$ (for Reynolds numbers <6 [STOKES])

GRAIN SIZE: eruption height

Isopleth & plume height calculation

- 1. Measure the maximum clasts at an outcrop
 - MP: Maximum pumice
 - ML: Maximum lithics
 - Geometric mean of 3 axes
 - Mean of the 5 largest clasts

Isopleth & plume height calculation

- 1. Measure the maximum clast at an outcrop
 - MP: Maximum pumice
 - ML: Maximum lithics
 - Geometric mean of 3 axes
 - Mean of the 5 largest clasts
- 2. Contour **isopleth**
 - = contours of equal diameter

Classifications

- $\mathbf{b}_{\mathbf{t}}$: Half-thickness distance \rightarrow *Thinning*
- $\mathbf{b}_{\mathbf{C}}$: Half-diameter distance \rightarrow *Fining*
- Basis of field-based classification

2) limitations and pitfalls

- In situ characterization is averaged over at least episodes and often eruptions
- Abrupt and gradual temporal shifts are neglected and glossed-over

Componentry

→ Sorting? Grading? Layering?

Limitations: Fine temporal variations in MER Non-sustained Sustained

Steady

Eruption dynamics

- In situ characterization is averaged over at least episodes and often entire eruptions
- Abrupt and gradual temporal sifts are neglected and glossed-over

A new approach: particle characterization in-flight using high resolution videos

Key inputs to plume and fountain models include: **exit velocity**, plume/ or fountain height, the total erupted mass, mass eruption rate and size distribution of ejected particles. All are hard to constrain by conventional means due to poor temporal resolution and the effects of down-transport size an density fractionation.

Quantifying complex changes on fine spatial and temporal scales

Cam 2

Particle velocimetry in 3D

Gaudin et al. (2016) 3-D stereography from high-speed imaging

2m

8 December 2015 13:16 HST Filmed at: 500 frames/second

Played at: 28.6 frames/second 16 × slower

Mintz et al. in review

Lava lakes: tracking bubble ascent and bursting at HMM

Pre-bursting bubble ascent

Mintz et al. in review

December 8, 2015 14:48 HST bubble ascent rate versus time

Fountain/jet heights: steady vs unsteady Hawaiian

 STEADY: Height deviates from average height by only ~5%

increased role of coupled bubbles

Note contrasting styles \rightarrow

Walker & Houghton submitted to Geology

LERZ Fissure 8 (29 May, 2018)

Walker & Houghton submitted to Geology

Pyroclast tracking and manual grain size

Automated grain size distributions

- 1) image preprocessing: Matlab wavelength/background removal
- 2) image thresholding: ImageJ grey scale intensity
- 3) particle analysis Matlab/Image J
- 4) data postprocessing Matlab
- 5) data analysis

In-flight grain size distribution for a single frame (frame rate 0.033 sec) using two different methods Side-by-side comparison

velocity m/s

Mass (kg)

500

0

1000

0 500

1000

Erupted mass with time (by frame)

In-flight velocimetry and mass eruption rate measurements over a 60 second clip

Stromboli, Sept. 2018

Optronis CR600X2, 1280x1024 500 fps 1 pixel=0.010 m

Etna, July 2014

Optronis CR600X2, 1280x1024 500 fps 1 pixel=0.008 m

50th percentile (m)

Median diameter (m)

100 200 300 400 500 600 700 800 900 1000 x position (pixel)

(e)

(pixel)

100 200 300 400 500 600 700 800 900 1000 x position (pixel)

sec)

Kilauea 2018

- Currently (generally) limited to small/ weak eruptions
- Issues with thermally or optically opaque fountains/plumes

Thank you

Plume height & flux

- Plume theory predicts that the mass eruption rate (MER; kg ^{s-1}) is related to the 4th power of the plume height
- 2. Wind influences MER

Plume height & flux

- Plume theory predicts that the mass eruption rate (MER; kg ^{s-1}) is related to the 4th power of the plume height
- 2. Wind influences MER
- 3. Empirical relationship:

 $H = 2.00 \dot{V}^{0.241}$

- **H** Height of the umbrella cloud (km asl)
- **V** Volumetric flow rate (m³ DRE s⁻¹)
- **DRE** Dense rock equivalent

