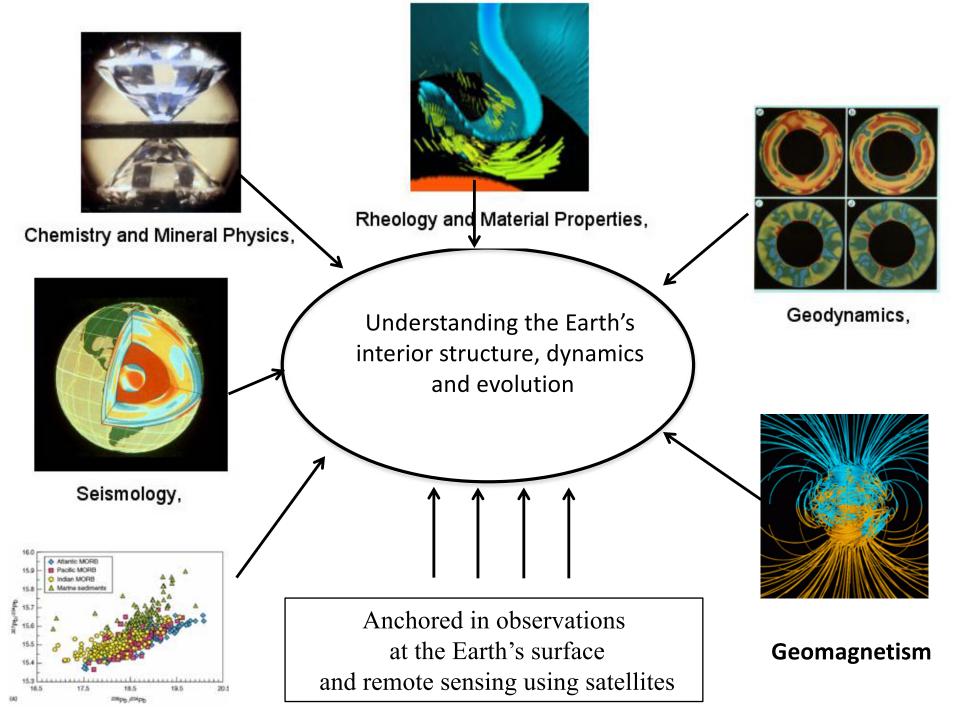
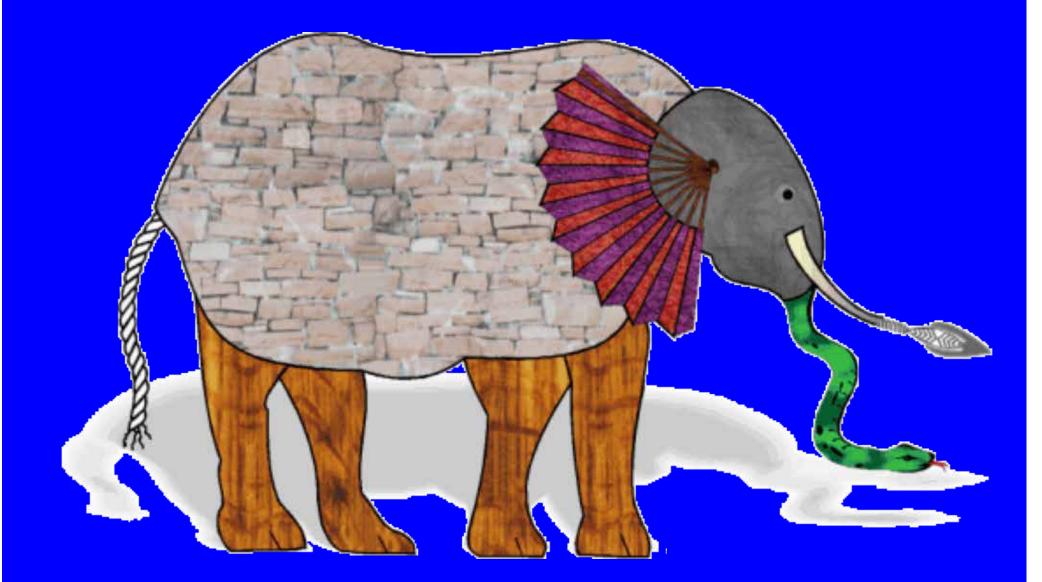
Cooperative Institute for Dynamic Earth Research

2019 CIDER Summer Program

Bruce Buffett


Univ. of California, Berkeley

Funded by CSEDI program (2004-2011), FESD (2012-2018), and CSEDI (2019-2020)



Cooperative Institute for Dynamic Earth Research

Geochemistry/cosmochemistry

Parable of the blind men and the elephant

Recognizing the need for more effective communication and understanding between the different disciplines, CIDER's goal is to provide:

Cooperative Institute for Dynamic Earth Research

- An intellectual framework for integrated multi-disciplinary research in the geosciences
- An essential complement to growing infrastructure for data gathering and distribution
- A cross-disciplinary educational environment to prepare the next generation of earth scientists

2002 - Visit KITP

2009 – Marconi Center Community Workshop

- To review past activities,
- To define the scope of CIDER-II
- -> "D" changed from "Deep" to "Dynamic"
- Resulted in:
 - proposal to FESD- 2011
- -> 5 years of funding with expanded scope.

2003 – Marconi Center Community Workshop

• To define the scope and format of CIDER

- Resulted in proposal to NSF/CSEDI->
- co- funded 1st summer program with KITP (2004)
- Funded summer at KITP in 2006, 2008, 2010

2016 – Marconi Center Community Workshop

- To review CIDER accomplishments
- To define the scope of CIDER beyond 2017 and start planning for future funding model

CIDER Summer Programs

- At KITP, U.C. Santa Barbara
 - 2004 : "Relating seismological and geochemical heterogeneity in the earth's mantle"
 - 2006: "The earth's transition zone"
 - 2008: "Boundary layers in the Earth"
 - 2010: "Fluids and volatiles in the Earth's mantle and core"
 - 2012: "Deep time: how the early Earth became the modern world"
 - 2014: "Dynamics of planetary interiors"
 - 2016: "Flow in the deep Earth"
 - 2018: "Relating seismological and geochemical heterogeneity in the earth's mantle"
 - 2020: "Earth's evolution as an inhabited world"

CIDER Summer Programs

- At UC Berkeley
 - 2011: "Dynamics of mountain building"
 - 2013: ""From mantle to crust: continental formation and destruction"
 - 2015: "Solid Earth and climate"
 - 2017: "Subduction zone structure and dynamics"
 - 2019: "Volcanoes"

CIDER 2008, KITP

CIDER 2004, KITP

CIDER 2010, KITP

CIDER 2011, Berkeley

CIDER "Burnman group" in action, Summer 2012

CIDER poster session Summer 2014

New activities starting in 2012 (FESD):

- Post or pre -AGU CIDER workshops:
 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018
- Support for research projects initiated during summer program
- Support for "working groups" :
 - Reference Earth Model (led by V. Lekic)
 - Attenuation (led by D. Wiens)
 - Geoneutrinos (led by W. McDonough)
 - Geomagnetic prediction (led by D. Lathrop)
 - Dynamic topography (led by S. Zhong)

Cooperative Institute for Dynamic Earth Research

CIDER wiki

- Open to the public (www.deep-earth.org)
 - Summer program lecture slides and video-recording
 - CIDER Lecture Collection
 - Reports of Working Groups
 - Other Activities
 - CIDER publications, presentations, proposals
 - Wiki-topic pages
 - E.g. "Seismic Reference Earth Models"
 - "Dynamic topography" ...
- Open only to CIDER participants
 - Student Research Group pages

Cooperative Institute for Dynamic Earth Research

CIDER Summer Program Products

- Research groups formed during the summer program continue to function after the end of the summer program (AGU posters, publications)
- More generally, new collaborations lead to publications and/or proposals
- Networking among participants.
 - Post-doc and faculty positions

From 2013	3 Summer	Program:

RESEARCH ARTICLECharacterization and Petrological Constraints of the10.1002/2015GC005943Midlithospheric Discontinuity

Erika Rader¹, Erica Emry², Nicholas Schmerr³, Daniel Frost⁴, Cheng Cheng⁵, Julie Menard¹, Chun-Quan Yu⁶, and Dennis Geist⁷

From 2014 Summer Program:

G-Cubed 2015

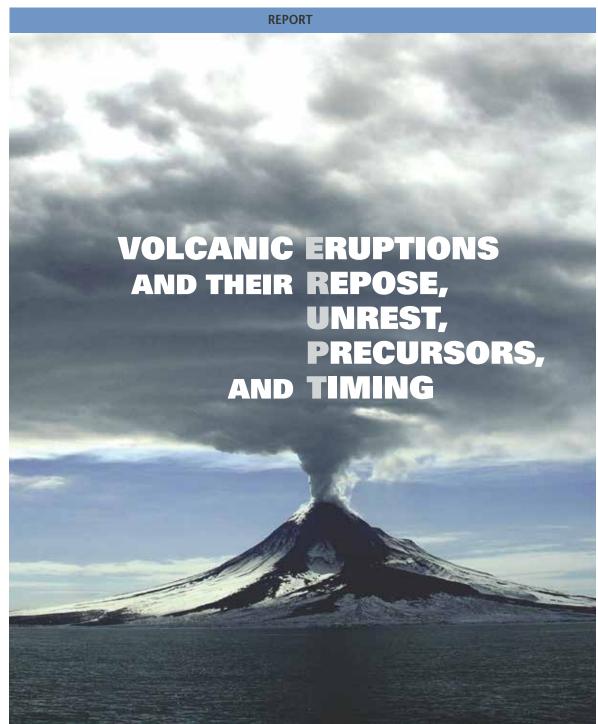
RESEARCH LETTER	Primordial metallic melt in the deep mantle
10.1002/2016GL068560	Zhou Zhang ¹ , Susannah M. Dorfman ^{2,3} , Jabrane Labidi ⁴ , Shuai Zhang ⁵ , Mingming Li ^{6,7} ,
GRL., 2016	Michael Manga ⁵ , Lars Stixrude ⁸ , William F. McDonough ⁹ , and Quentin Williams ¹⁰

From 2016 Summer Program:

RESEARCH ARTICLE	Multidisciplinary Constraints on the Abundance of Diamond
10.1029/2018GC007534	and Eclogite in the Cratonic Lithosphere
G-Cubed 2018	Joshua M. Garber ^{1,2} ⁽¹⁾ , Satish Maurya ^{3,4} , Jean-Alexis Hernandez ⁵ , Megan S. Duncan ^{6,7} ⁽¹⁾ , Li Zeng ⁸ ⁽¹⁾ , Hongluo L. Zhang ⁹ , Ulrich Faul ¹⁰ ⁽¹⁾ , Catherine McCammon ¹¹ ⁽¹⁾ , Jean-Paul Montagner ³ ⁽¹⁾ , Louis Moresi ¹² ⁽¹⁾ , Barbara A. Romanowicz ^{4,13} ⁽¹⁾ , Roberta L. Rudnick ¹ , and Lars Stixrude ¹⁴

From 2017 Summer Program

https://doi.org/10.1038/s41467-019-09113-0


OPEN

The causes of spatiotemporal variations in erupted fluxes and compositions along a volcanic arc

C.B. Till¹, A.J.R. Kent², G.A. Abers³, H.A. Janiszewski^{4,5}, J.B. Gaherty⁴ & B.W. Pitcher^{2,6}

Nature Comm., 2019

The National Academies of SCIENCES • ENGINEERING • MEDICINE

Summary of the ERUPT report Grand Challenges

- Forecast the onset, size, duration and hazard of eruptions by integrating observations with quantitative models of magma dynamics
- Quantify the life cycles of volcanoes globally and overcome our current biased understanding

 Develop a coordinated volcano science community to maximize scientific returns from any volcanic event

5. Strengthening volcano science

Requirements for an effective volcano science community

- Support for interdisciplinary collaboration and training, which is essential to making discoveries and integrating models and measurements
- Shared community infrastructure, which is necessary for state-ofthe-art modeling, analytical facilities, monitoring and field experiments
- Databases that preserve and facilitate open exchange of information and hence enable exploration of the life cycle of volcanoes and improve forecasting
- New technology and instruments that permit new detection, measurements and sampling, including previously inaccessible parts of ongoing eruptions
 - A coordinated response by the research community to eruptions globally to overcome observational bias
 - **Observatory-academic partnerships**, which will accelerate the translation of basic science to applications and monitoring

6. Grand challenges in volcano science


3. Develop a coordinated volcano science community to maximize scientific returns from *any* volcanic event

The research community needs to be prepared to monitor and respond to eruptions globally

Requires multidisciplinary research, USGS-academic partnerships, training networks

Logistics

- Lectures:
 - Recording
 - Microphones
 - Lecturers post lecture ppt/pdfs on the wiki
 - https:/seismo.berkeley.edu/wiki_cider/2019_Summer_Program_Agenda
 - Assistance from Dan Frost
 - Login:CIDER.2019
 - Password:summer2019
- Poster Sessions
 - Wed. June 19th : A-Mi
 - Wed. June 26th: Mu-Z
- Wear badges at all times
- Lunch cards
- The University of California indoors AND outdoors is non-smoking sampus
- Group dinners (Wednesdays on campus, volunteers)
- Group photo (Tuesday during morning coffee break)
- Reimbursements (students and post-docs by June 28, senior participants by July 7)

Sarna-Wojcicki et al., Geosphere (2011)

Clear Lake volcanic field

Late-Pliocene to early Holocene

~100 km³ since 2.1 Ma

Mean interval between eruptions is 1800 years (USGS)

Basalt to rhyolite

Supports world's largest geothermal facility ("The Geysers")

